首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A pilot scale investigation was undertaken at the Allegheny County Sanitary Authority (ALCOSAN) for approximately 12 months to evaluate the feasibility of using cross-flow microfiltration for the treatment of primary sewage effluent simulating combined and sanitary sewer overflows. Ceramic membranes of various pores sizes (0.05–1.4?μm) were tested to understand the impact of cross-flow velocity, transmembrane pressure, and feed suspended solids on permeate water quality and permeate flux rate. A 0.2?μm membrane operated with a 1.8?m/s cross-flow velocity, a transmembrane pressure below 2.1 bar and a backpulse frequency of 60 s showed the best performance among the conditions evaluated in this study. The 0.2?μm membrane consistently met water quality objectives for fecal coliforms, E Coli, enterococci, BOD5, and suspended solids independent of the feed concentration, suggesting that direct discharge to surface water may be feasible. Feed suspended solids concentration and temperature influenced membrane permeate flux. Membrane cleaning with alkaline sodium hypochlorite solution is recommended as the first step followed by nitric acid cleaning if needed.  相似文献   

2.
Application of cross-flow microfiltration with and without backpulsing is evaluated for the treatment of dilute primary sewage effluent simulating combined sewer overflow wastewater. Four alpha alumina ceramic membranes of various pores sizes (0.2–5.0?μm) were tested to understand the impact of cross-flow velocity and transmembrane pressure on the permeate water quality and flux rate. The 0.2 and 0.8?μm membranes produced a permeate water quality that is likely to be suitable for surface water discharge. The combination of permeate chemical and biological water quality and long-term flux rates suggest that a 0.2?μm membrane would be the most appropriate membrane for the treatment of combined sewer overflow wastewater within sewersheds.  相似文献   

3.
This study focused on perchlorate (ClO4?) rejection and flux-decline in bench-scale cross-flow flat-sheet filtration for two reverse osmosis (RO) and two nanofiltration (NF) membranes with a natural water, and addressed estimation of precipitative fouling/scaling with inorganic salts and characterizations of inorganic fouling and antiscalants. Thus the study considered tradeoffs between productivity (increased recovery and flux) versus ClO4? rejection versus membrane fouling/scaling. In this study, the rejection of water quality parameters (cations, anions, dissolved organic carbon, UVA254, total dissolved solids) and flux-decline trends for four different membranes were investigated over a various range of operating conditions (i.e., J0/k ratio and recovery). Inorganic foulants on the membrane surface were analyzed by various methods (i.e., x-ray diffraction and scanning electron microscopy), and demonstrated inhibition effects of antiscalant. With increasing recovery and J0/k ratio, high productivity (flux) was achieved, however, the rejections of perchlorate and other water quality parameters decreased and the precipitative fouling/scaling potential of membranes increased. At the same operating conditions in the presence of an antiscalant, embodying phosphonate functional groups, flux decline trends for the four membranes indicated lower scale formation supported by the results of the fouled membrane characterizations.  相似文献   

4.
Membrane cleaning is critical to the operation of membrane processes. This paper studies the impact of using four different types of bench-scale membrane systems to assess the effectiveness of different cleaning steps after the filtration of colored river water. The systems are a stirred ultrafiltration (UF) cell, a SEPA cell, a small cross-flow (CF) cell, and a six-CF-cell-in-parallel system. The effect of cleaning frequency was also investigated. The comparison was implemented in terms of flux recovery, solute removal, solute resistance removal, and changes of contact angles. The stirred UF cell was only reliable and comparable in terms of flux and flux recovery results. The six-cell-in-parallel system requires further development due to their much lower flux. For cleaning at 30-min intervals, the cleaning efficiency of membranes was similar for the three CF systems. For cleaning intervals of 2 and 4 h did not statistically affect the flux recovery for the stirred UF cell and SEPA cell. There was some irreversible fouling that could not be restored completely by clean-in-place method even with rigorous chemical treatment.  相似文献   

5.
Three 3?L laboratory scale submerged anaerobic membrane bioreactors (SAMBRs) with in situ membrane cleaning due to the bubbling of recycled biogas underneath them were studied for their ability to treat dilute wastewaters. Both Mitsubishi Rayon hollow-fiber and Kubota flat sheet membranes made of polyethylene with a pore size of 0.4?μm were used in this study, and the effect of different substrates (460?mg/L of glucose or synthetic) on chemical oxygen demand (COD) performance in the SAMBR was investigated. It was found that both membranes resulted in similar COD removals (>90% soluble COD at a hydraulic retention time of 3?h), but that the transmembrane pressure across the hollow fiber membranes was higher under similar conditions. Molecular weight analysis of the feed, reactor contents, effluent, and extracellular polymers using high pressure liquid chromatography showed that the membrane filtered out most of the high MW soluble organics, resulting in high COD removals. The experimental results from the SAMBR show the potential benefits of using this novel reactor design in a biological wastewater treatment process to minimize energy use and sludge production.  相似文献   

6.
A novel wastewater microirrigation technology for plants to extract reclaimed water from hydrophilic, homogenous dense membrane modules placed directly in the soil was evaluated. A series of tests were conducted in the laboratory to examine the effects of membrane configuration (hollow fiber (HF) and corrugated sheet (CS) membranes), soil texture (a loam and loamy sand soil), soil water content, feed pressure, and contaminant concentration on water permeate flux. The performance was evaluated in terms of soil water content, soil electroconductivity, water permeate flux and enrichment factor using borate, selenate, sodium chloride and glucose as model compounds. The results showed that the water permeate fluxes ranged from 0.21 to 1.04?L/m2/d for CS modules and from 0.10 to 1.00?L/m2/d for HF modules, respectively. Soil water content and feed pressure were identified as the main controlling factors for water flux. The enrichment factors were found to be less than 0.25 for all the tested contaminants. Thus, it was concluded that this membrane technology holds promise either to treat brackish ground water or to reuse wastewater for agricultural micro-irrigation.  相似文献   

7.
Results from a potable water microfiltration (MF) pilot study employing untreated surface water are reported. The effects of filtrate flux and recovery on direct flow, outside-inside, hollow fiber MF fouling rates, and backwash effectiveness are presented. Constant flux experiments suggested the existence of a critical recovery below which MF fouling rates were low and effectiveness of backwashes was high and relatively independent of the recovery. However, in the range of experimental conditions investigated, fouling rates increased dramatically and backwash effectiveness decreased steeply when this critical recovery was exceeded regardless of the flux. In general, for a fixed recovery, specific flux profiles analyzed on the basis of volume filtered per unit membrane area were insensitive to filtrate flux. Fouling was accelerated by operating membranes at constant flux rather than at constant pressure, in part, because of membrane compaction and cake compression. Changing the mode of filtration between constant flux and constant pressure is shown to have no effect on MF filtrate water quality. For any given capacity, membrane area requirements are decreased, and power requirements are increased when membranes are operated at constant flux rather than at constant pressure.  相似文献   

8.
Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.  相似文献   

9.
Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA) Test & Evaluation (T&E) Facility in Cincinnati on two ceramic filtration cartridges with pore sizes of 0.05 and 0.01?μm to evaluate their ability to remove turbidity and microbiological contaminants such as bacteria [Bacillus subtilis ( ≈ 1.0?μm) and Escherichia coli ( ≈ 1.4?μm)], Cryptosporidium oocysts (4–6?μm), polystyrene latex (PSL) beads (2.85?μm) (a surrogate for Cryptosporidium), and MS2 bacteriophage ( ≈ 0.02?μm) (a surrogate for enteric viruses). The results demonstrated that the relatively tighter 0.01-μm cartridge performed better than the 0.05-μm cartridge in removing all the biological contaminants and surrogates. For turbidity removal, the 0.01-μm cartridge performed slightly better than the 0.05-μm cartridge; however, the permeate rate in the 0.01-μm cartridge reduced rapidly at higher feed water turbidity levels indicating that a tighter membrane should only be used with adequate pretreatment or at a low feed water turbidity to prolong membrane life. Microbiological monitoring was identified as a more sensitive indirect integrity monitoring method than turbidity and particle count monitoring to ensure effective treatment of water by ceramic filtration. Both PSL beads and B. subtilis showed potential as effective surrogates for Cryptosporidium, with B. subtilis showing higher degree of conservatism. Any opinions expressed in this article are those of the writer(s) and do not necessarily reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by EPA. This document has been reviewed in accordance with EPA’s peer and administrative review policies and approved for publication.  相似文献   

10.
Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.  相似文献   

11.
In this work, the contact angles of molybdenite powders in various size fractions (+150 μm, ?150 + 75 μm, ?53 + 38 μm, ?38 + 20 μm, and ?5 μm) were determined with the Washburn method by measuring the mass of capillary rise liquids in molybdenite powder beds as the function of time. It was shown that molybdenite powders had a smaller contact angle in superfine size range (?5 μm) than the common size range (+20 μm), which might be attributed to the large decrease of the face/edge ratio on molybdenite surfaces. Also, it has been found that the contact angle of molybdenite particles did not change as the decrease of particle size in the range of +20 μm.  相似文献   

12.
Filipin is a macrolide polyene with antifungal activity belonging to the same family of antibiotics as amphotericin B and nystatin. Despite the spectroscopy and electron microscopy studies of its interaction with natural membranes and membrane model systems, several aspects of its biochemical action, such as the role of membrane sterols, remain to be completely understood. We have used atomic force microscopy (AFM) to study the effect of filipin on dipalmitoylphosphatidylethanolamine bilayers in the presence and absence of cholesterol. The bilayers were prepared by Langmuir-Blodgett deposition over mica and imaged under water. It was shown that filipin-induced lesions could only be found in membranes with cholesterol. In close agreement with electron microscopy results, we have reported the presence of densely packed circular protrusions in the membrane with a mean diameter of 19 nm (corrected for convolution with AFM tip) and 0.4 nm height. Larger circular protrusions (90 nm diameter and 2.5 nm height) and doughnut-shaped lesions were also detected. These results demonstrate that filipin-induced lesions in membranes previously observed by electron microscopy are not biased by artifacts resulting from sample preparation. Filipin aggregates in aqueous solution could also be imaged for the first time. These polydisperse spherical structures were observed in samples with and without cholesterol.  相似文献   

13.
The particle size distribution (PSD) of lunar dust, the <20?μm portion of the regolith, was determined as an initial step in the study of the possible toxicological effects it may have on the human respiratory and pulmonary systems. Utilizing scanning electron microscopy, PSDs were determined for Apollo 11 (10084) and 17 (70051) dust samples, as well as lunar dust simulant JSC-1Avf. The novel methodology employed is described in detail. All measured PSDs feature a log-normal distribution having a single mode in a range 100–300?nm for lunar dust samples, but the lunar simulant has a mode at ~ 600?nm.  相似文献   

14.
U(VI) was transported at 23 ± 1°C from 5–6 M phosphoric acid solutions through liquid membranes of kerosene solutions of di(2-ethylhexyl) phosphoric acid and trioctyl phosphine oxide (D2EHPA/TOPO) supported on porous polytetrafluoroethylene to a solution of phosphoric acid of equal or greater molarity containing ferrous ion as a reducing agent. The ferrous ion could be omitted when the higher molarity acid was used. The uranium flux was proportional to the U(VI) concentration. The overall resistivity of the membranes to uranium flux had a diffusional component that was proportional to the membrane thickness and an interfacial component that resulted from rate-limiting uranium complexation/decomplexation kinetics. The interfacial component accounted for over 80% of the resistivity of a membrane 75 μm thick. Increasing the temperature to 60°C only slightly diminished the interfacial resistivity. A theoretical model was constructed that accommodated data obtained from uranium transport through the membranes and through quiescent layers of phosphoric acid and D2EHPA/TOPO in kerosene. The average uranium flux from simulated solutions of wet-process phosphoric acid at 90% uranium transfer was estimated to be 1.3 × 10?11 mol cm?2 sec?1, or 0.09 lb ft?2 yr?1. The flux was judged to be too low for supported liquid membranes to be competitive with liquid/liquid extraction for recovery of uranium from wet-process phosphoric acid.  相似文献   

15.
Micro-porous FeAl membranes were prepared directly onto a macro-porous FeAl support through brushing and reactive synthesis using Fe and Al elemental powders with different particle sizes. X-ray diffraction, scanning electron microscope and pore structure testing were used to study the phase composition, interfacial microstructure and pore structure of the resulting graded pore-sized FeAl membrane. The effects of membrane thickness on permeability and maximum pore size were also investigated. Results showed that a metallurgically strong joint is formed between the membrane and support and that no cracks and defects may be found on the interface due to the elemental reactions, penetrating of coated powders into the pores of the support and the match of the thermal expansion coefficients between membrane and support. Membrane permeability decreased from 84.2 to 38.5?m3?m?2?kPa?1?h?1 and the maximum pore size of about 2.5 μm showed a slight change as the membrane thickness increased from 135.5 to 299.1?μm.  相似文献   

16.
The diffusion-bonding behavior of single-phase austenitic stainless steel depends strongly on the chemistry of the surfaces to be bounded. We found that very smooth (0.5 nm root-mean-square (RMS) roughness), mechanically polished and lapped substrates would bond completely in ultrahigh vacuum (UHV) in 1 hour at 1000 °C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion-beam cleaning, as shown by in-situ Auger analysis. No voids were observed in these bonded interfaces by transmission electron microscopy (TEM), and the strength was equal to that of the unbounded bare material. No bond formed between the substrates if in-situ ion cleaning was not used. The rougher cleaned substrates partially bonded, indicating that roughness, as well as native oxides, reduced the bonding kinetics.  相似文献   

17.
We have examined the association of 5-androsten-3beta-ol (androsterol) with saturated phosphatidylcholines (PCs), having symmetric acyl chains from 10 to 16 carbons in length, in both mono- and bilayer membranes. The emphasis of the study was to measure how hydrophobic mismatch (i.e. the difference in hydrophobic length of the interacting molecules) affected androsterol/PC interactions in model membranes. With monolayer membranes (33 mol% sterol, 20 mN/m, 25 degreesC), androsterol was found to be macroscopically miscible with all the tested PCs. Androsterol was observed to condense the lateral packing of di14 and di15 PCs (by 6 and 4.5 A2 per molecule, respectively), but failed to condense shorter (di10, di11, di12 and di13 PCs) or the longer chain di16PC. The rate of androsterol desorption from mixed monolayers to beta-cyclodextrin acceptors in the subphase was a clear function of the host PC acyl chain length. The slowest rate of androsterol desorption (i.e. best androsterol/PC interaction) was seen from a di14PC monolayer, whereas the desorption rate increased when the host PC had shorter or longer chains. When the cholesterol oxidase susceptibility of androsterol was determined in small unilamellar vesicles (SUV) containing PCs of different chain lengths (33 mol% androsterol), the slowest rate of oxidation was seen in di14PC vesicles, whereas higher rates were measured for shorter or longer chain PC vesicles, again suggesting that androsterol interacted more favorably with di14PC than with the other PCs. In conclusion, the hydrophobic mismatch between androsterol and different PCs appeared to greatly affect the intermolecular interactions, as determined from the condensation effect, from sterol desorption rates, and the oxidation susceptibility of androsterol. Although androsterol is not a physiological membrane component, the present model system clearly shows that hydrophobic mismatch has a great influence on how sterols and phosphatidylcholines interact in membranes.  相似文献   

18.
Characterization of the particle population for a location in a water supply reservoir, Kensico Reservoir, N.Y., is documented for a high turbidity event, from its onset, through alum treatment and its waning. Supporting in situ measurements included the beam attenuation coefficient at 670?nm (c670) and 660?nm (c660) [surrogates of turbidity (Tn)], particle concentrations (N) and size distributions (PSDs), and size class specific settling velocities (SVs). Laboratory measurements included chemical and morphometric analyses of individual particles, and routine measurements of Tn. The turbidity is shown to be primarily derived from clay minerals, mostly in the size range of 1.5–6?μm. An initial high c670 level (40?m?1;Tn ~ 100?NTU) decreased sevenfold in less than 1?week in response to alum treatment that largely eliminated the particle size classes responsible for the elevated turbidity. Successful SV experiments, made using a laser in situ scattering and transmissometry (LISST) instrument, for seven particle size classes in the range of 1.25–129?μm yielded SV values of 0.17–69.4?m?day?1. Size classes larger than ~ 5?μm settled much slower than Stokes law predictions, before alum treatment, indicating that these classes existed as porous flocs or aggregates. Decreases in SVs following treatment suggest changes in floc character consistent with increased porosity. In situ measurements of c670, N, PSDs, and SVs can contribute to the development and testing of a multiple particle size class model to simulate fate, transport, and impacts of suspended particles.  相似文献   

19.
Thymic epithelial cell lines isolated from hyperplastic thymi of transgenic mice over-expressing human papilloma viral oncogenes E6 and E7 constitutively displayed a phenotype consistent with a cortical origin. Exposure to IFN-gamma induced class II MHC and ICAM-1 expression, and up-regulated expression of VCAM-1 and class I MHC molecules. CD40 expression was maximally induced by a combination of IFN-gamma and IL-1, with lower levels of induction observed with a mixture of IFN-gamma and tumor necrosis factor (TNF)-alpha or TNF-alpha alone. B7-1 or B7-2 was not expressed constitutively or in response to cytokines. These stromal cells supported the development of CD4 single-positive (SP) cells in reaggregate co-cultures with CD4+ CD8+ thymocytes from TCR transgenic mice, but did not stimulate class II MHC-restricted, moth cytochrome c (MCC)-reactive T cells in vitro. The behavior of the culture system was consistent with positive selection, i.e. increased numbers of CD4 SP cells, gain of antigen responsiveness, and requirement for epithelial class II MHC products. Some variants of these stromal cell lines required exogenous MCC peptide in the reaggregation cultures (RC) for positive selection to occur. While a low concentration of MCC peptide (0.01-0.1 microM) significantly enhanced the accumulation of CD4 SP cells, higher concentrations of peptide (1-10 microM) resulted in recovery of predominantly CD4- CD8- and CD4(low) CD8- cells. Thymocytes recovered from RC containing low, but not high concentrations of peptide responded to MCC peptide in secondary cultures with splenic antigen-presenting cells.  相似文献   

20.
In this study several types of bottle materials (glass, PET (polyethylene terephthalate), PC (polycarbonate), HDPE (high density polyethylene), PP (polypropylene) and PVC (polyvinyl chloride)) were evaluated in order to be used as food refillables, comparing the residual chemical contamination after classical caustic washing. Bottles were contaminated with model chemicals (chloroxylenol and d-limonene) and caustic washed with varied process parameters using a simulated laboratory-scale washing procedure. After washing, the chemical-contaminated bottles were filled with water and stored for 28 days at 37 degrees C. The concentrations of the model chemicals in the water after storage were taken as a measure of chemical contamination. The influence of the cleaning parameters (temperature, caustic and commercial additive concentration) was studied using response surface methodology. Washing temperature showed a significant influence on the removal of absorbed chemicals from surfaces compared with the effect of the caustic and especially the additive concentration. Optimization of caustic cleaning for the cleaning process in question led to better cleaning effectiveness, although none of the different washing conditions were able to remove all absorbed chemicals out of the polymeric resins. Commercially available plastic refillables (PET and PC) showed the best chemical rinsability. Glass bottles, however, had in every case the best rinsing characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号