首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.
Quarterly base flow water quality data collected from October, 1993 to November, 2002 at 90 stream sites in the Great Smoky Mountains National Park were used in step-wise multiple linear regression models to analyze pH, acid neutralizing capacity (ANC), and sulfate and nitrate long-term time trends. The potential predictor variables included cumulative Julian day, seasonality, elevation, basin slope, stream order, precipitation, surrogate streamflows, geology, and acid depositional fluxes. Modeling revealed statistically significant decreasing trends in pH and sulfate with time at lower elevations, but generally no long-term time trends in stream nitrate or ANC. The best forecasting models were chosen based on maximizing the r2 of a holdout data set. If conditions remain the same and past trends continue, the forecasting models suggest that 30.0% of the sampling sites will reach pH values less than 6.0 in less than 10?years, 63.3% in less than 25?years, and 96.7% in less than 50?years. The pH forecasting models explain 65% of the variability in the holdout data.  相似文献   

2.
Hydraulic properties of soils used for water balance covers measured at the time of construction and one to four years after construction are compared to assess how the hydraulic properties of cover soils change over time as a result of exposure to field conditions. Data are evaluated from ten field sites in the United States that represent a broad range of environmental conditions. The comparison shows that the saturated hydraulic conductivity (Ks) can increase by a factor of 10,000, saturated volumetric water content (θs) by a factor of 2.0, van Genuchten’s α parameter by a factor of 100, and van Genuchten’s n parameter can decrease by a factor of 1.4. Larger changes occur for denser or more plastic fine-textured soils that have lower as-built Ks, α, and θs and higher as-built n, resulting in a reduction in the variation in hydraulic properties that can be attributed to compaction. After two to four years, many water balance cover soils can be assumed to have Ks between 10?5 and 10?3?cm/s, θs between 0.36 and 0.40, α between 0.002 and 0.2?kPa?1, and n between 1.2 and 1.5. The data may be used to estimate changes in hydraulic properties for applications such as waste containment, where long-term maintenance of hydraulic properties in shallow engineered soil layers is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号