首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen Demand by a Sediment Bed of Finite Length   总被引:1,自引:0,他引:1  
A model of sedimentary oxygen demand (SOD) for a sediment bed of finite length is presented. The responses of diffusive oxygen transfer in turbulent flow above the sediment surface and of microbial activity inside the sediment to a developing diffusive boundary layer are modeled numerically. The developing diffusive boundary layer above the sediment/water interface is modeled based on shear velocity and turbulent boundary layer concepts, and dissolved oxygen (DO) uptake inside the sediment is modeled as a function of the microbial growth rate. The model predicts that the diffusive boundary layer above the sediment/water interface thickens in flow direction, and that DO penetration depth into the sediment is practically constant over the length of the sediment bed. The effect of the developing diffusive boundary layer on SOD is minor, except at very low shear/flow velocities (shear velocity U*<0.01?cm/s) and/or high microbial density inside the sediment. The average SOD over the sediment bed therefore varies only slightly with its length. SOD varies somewhat in flow direction, i.e., SOD is largest near the leading edge (x = 0), decreases with distance, and finally, approaches a nearly constant value for fully developed boundary layer. Including microbial activity in the sediment makes the change of SOD in flow direction much smaller than is predicted by a pure vertical diffusive flux model. The diffusive boundary layer is nearly fully developed at a dimensionless distance x+ = 10,000, regardless of microbial activity inside the sediment. Longer sediment beds are required to eliminate the small leading edge effect on any measured average SOD value. SOD depends strongly on the diffusion coefficient of DO inside the sediment bed. This effect becomes more significant as shear/flow velocity is increased. Overall, SOD is found to be controlled principally by shear velocity of the water flowing above the sediment/water interface, microbial activity inside the sediment, and diffusion of DO inside the sediment. The length of the sediment bed is of lesser influence.  相似文献   

2.
This study examined nutrient fluxes between sediment and water with a laboratory-scale benthic chamber. This research targeted an artificial lake that had undergone water-quality problems. Two sites at Lake Asan, Site A in the vicinity of the dam and Site B at the inflow of the lake, were selected and characteristics of the sediments and their influence on the water quality of the lake were evaluated. Most of the inorganic phosphorus in the study area was in the form of apatite and nonapatite phosphorus (91.9% of Site A, 83.3% of Site B). Site B, with a fast-stream velocity, had larger particle size, smaller nutrient level, and smaller amounts of inorganic phosphorus than Site A. The benthic chamber experiment showed that overall fluxes of Site A were as follows: ammonia is 0.003??μmol?cm-2?day-1, nitrate is -0.067??μmol?cm-2?day-1, and phosphate is 1.049??nmol?cm-2?day-1. Site B showed an increase in phosphate concentration after a dissolved oxygen (DO) drop (<3??mg/l), which resulted in smaller negative nitrate fluxes (-0.043??μmol?cm-2?day-1), larger positive ammonia (0.137??μmol?cm-2?day-1), and larger phosphate fluxes (2.120??nmol?cm-2?day-1) than at Site A. The movement of nutrients at the sediment-water interface was more sensitive to environmental conditions such as DO than other factors, such as sediment characteristics and chemical forms of nutrients. On the basis of the fluxes obtained from the benthic chamber, positive values are estimated for both phosphorus and nitrogen release rates. This indicates that during the sampling period sediment acted as a source of nitrogen as well as phosphorus to the overlying waterbody.  相似文献   

3.
Diffusional mass transfer of dissolved substances across the sediment–water interface in coastal waters is an important factor for realistic determination of sediment oxygen demand (SOD) and nutrient recycle. The benthic diffusive boundary layer inside a cylindrical chamber commonly deployed for in situ measurements of sediment oxygen demand is studied. In a series of laboratory experiments, the SOD is measured with the chamber operated in both continuous flow and batch modes, and a microelectrode is employed to measure the near bed dissolved oxygen (DO) profile for different chamber flows and sediment types. The dependence of the diffusive boundary layer thickness and the sediment–water mass transfer coefficient on the hydraulic parameters are quantified. Using the derived mass transfer coefficient, it is shown that for a given sediment type, the SOD is a function of the bulk DO concentration and chamber flowrate. The theoretical predictions are validated by both laboratory and field SOD data.  相似文献   

4.
Utilizing a miniature, Clark-type, dissolved oxygen (DO) microprobe and a laser-Doppler velocimeter (LDV), laboratory experiments were conducted to elucidate the effect of the turbulent flow field on the diffusive sublayer thickness, mass transfer coefficient, and DO flux over a smooth bed. Both an artificial and a natural sediment were tested under flow conditions ranging in Reynolds number from 0 to 7,000, for a total of 17 experiments. The vertical resolution achieved with the microprobe enabled measurement of DO concentrations within the diffusive boundary layer and provided a direct measurement of the concentration sublayer thickness. Velocity profile measurements obtained with the LDV were used to estimate the depth-averaged velocity and the shear stress velocity. Analysis of the data included formulation of dimensionless groups and the obtaining of empirical relationships that can facilitate the prediction of the diffusive sublayer thickness, mass transfer coefficient, and mass flux at the sediment-water interface. Although the experimental work focuses on DO transport, the approach undertaken represents a generalized theory of waterside-controlled mass transfer at the sediment-water interface in the presence of a moving fluid.  相似文献   

5.
Sediment oxygen demand (SOD) can be a significant oxygen sink in various types of water bodies, particularly slow-moving waters with substantial organic sediment accumulation. In most settings in which SOD is a concern, the prevailing hydraulic conditions are such that the impact of sediment resuspension on SOD is not considered. However, in the case of Bubbly Creek in Chicago, the prevailing slack water conditions are interrupted by infrequent intervals of very high flow rates associated with pumped combined sewer overflow (CSO) during intense hydrologic events. These events can cause resuspension of the highly organic, nutrient-rich bottom sediments, resulting in precipitous drawdown of dissolved oxygen (DO) in the water column. To address this issue, a new in situ experimental apparatus designed to achieve high flow velocities was implemented to characterize SOD, both with and without sediment resuspension. In the case of resuspension, the suspended sediment concentration was analyzed as a function of bed shear stress, and a formulation was developed to characterize resuspended-sediment oxygen demand (SODR) as a function of suspended sediment concentration in a form similar to first-order biochemical oxygen demand (BOD) kinetics with the DO term in the form of Monod kinetics. The results obtained can be implemented into a model containing hydrodynamic, sediment transport, and water-quality components to yield oxygen demand varying in both space and time for specific flow events. The results are used to evaluate water quality improvement alternatives that take into account the impact of SOD under various flow conditions.  相似文献   

6.
The hydraulic characteristics of horizontally installed sorbent wick sampling devices were evaluated through wick tracer studies and laboratory soil column experiments to assess the influence of horizontal wick length and sampler interface design on sampling pore water in unsaturated soils. The nominal sampler design consisted of a cylindrical porous metal interface packed with granular-activated carbon encapsulating the end of a fiberglass wick that extended 100 cm horizontally from the interface before dropping 100 cm vertically to a collection vessel. The maximum sampling rate of horizontally installed wick systems declines exponentially with increasing horizontal wick length, while the vertical length influences the range of soil–water pressures that may be sampled. The nominal design sampled pore water from clay loam laboratory columns at 8 to 14 mL?h?1 under steady-state infiltration conditions and 2 to 5 mL?h?1 under draining conditions across a ?10 to ?45 cm H2O soil–water pressure range. Sampling rates in medium-grained sand under similar flow conditions were less than that of the clay loam due to reduced water content and reduced interface/soil contact area. An analysis of observed sampling velocities versus calculated soil water contents and hydraulic conductivities indicated that the design performs best when the soil water content is greater than 0.15 and unsaturated hydraulic conductivity is greater than 0.2 cm?h?1. A hydraulic model was developed that estimates the sampling velocity of the nominal design based on sampler interface pressure, which was linearly correlated with soil pressure.  相似文献   

7.
Time-variable (periodic) flow over a lake bed, and the associated boundary layer development, have the potential to control or at least influence rates of mass transfer across the sediment/water interface. An analysis for instantaneous and time averaged flux of a material across the sediment/water interface for infinite supply in the water and infinite sink in the sediment is presented. The water flow above the interface is characterized by the shear velocity (U?) which is a periodic function of time with a maximum amplitude of (U?0) as may be typical of an internal seiche (internal standing wave) motion in a density stratified lake. The relationship between the shear velocity on the lake bed and the wind shear on the lake surface is illustrated for an extremely simplified two-layered lake of constant depth. For a less restrictive analysis, shear velocities on a lake bed have to be obtained either from field measurements or from a three-dimensional lake circulation model driven by atmospheric forcing including wind. Smaller and wind-sheltered lakes will have lower (U?0) and periodicities (T). The response of the diffusive boundary layer was related to the period of the periodic motion (T), Schmidt number (Sc), and shear velocity (U?). The vertical diffusive flux at the sediment/water interface was expressed by a Sherwood number (Sh), either instantaneous or time averaged. The mean Sherwood number (Shave) varies with shear velocity of the wave motion over the sediment bed, Schmidt number (Sc) and the period (T) due to the response of the diffusive boundary layer to the time variable water velocity. Effective diffusive boundary layers develop only at low shear velocities. Where they do, maximum and minimum boundary layer thickness depends on all three independent variables (T, Sc, and U?0). The diffusive boundary layer strongly affects sediment/water mass transfer, i.e., Sherwood numbers. Mass transfer averaged over a period can be substantially less than that produced by steady-state flow at the same U?0 and Sc. At Sc = 500, typical for dissolved oxygen, the mass transfer ratio can be reduced to 60% of steady state, depending on the internal wave period (T).  相似文献   

8.
Hypolimnetic oxygenation can improve water quality by decreasing hypolimnetic accumulation of reduced compounds that complicate potable water treatment. Historically, aeration systems have been undersized because designers have not accounted for increases in sediment oxygen demand (SOD) resulting from the operation of aeration systems. A comprehensive study was performed to estimate the hypolimnetic oxygen demand (HOD) in San Vicente Reservoir, a eutrophic raw water reservoir in San Diego. Chamber experiments confirmed that turbulence and oxygen concentration at the sediment-water interface dramatically affected SOD. Values ranged from under 0.2?g/m2/day under quiescent low-oxygen conditions to over 1.0?g/m2/day under turbulent high-oxygen conditions. Based on a statistical evaluation of historical oxygen concentrations in the reservoir and anticipated increases in SOD resulting from operation of an oxygenation system, a design HOD of 16,400?kg/day was estimated. This is approximately four times the HOD observed in the spring after the onset of thermal stratification. Laboratory chamber experiments confirmed that maintenance of a well-oxygenated sediment-water interface inhibited the release of phosphate, ammonia, iron, and manganese from sediments. In addition, hydrodynamic modeling using DYRESM-WQ showed that operation of a linear diffuser oxygenation system would not significantly affect thermal stratification.  相似文献   

9.
The “velocity pulse model” simulates the transfer of turbulence from flowing water into a sediment bed, and its effect on the diffusional mass transfer of a solute (e.g., oxygen, sulfate, or nitrate) in the sediment bed. In the “pulse model,” turbulence above the sediment surface is described by sinusoidal variations of vertical velocity in time. It is shown that vertical velocity components dampen quickly inside the sediment when the frequency of velocity fluctuations is high and viscous dissipation is strong. Viscous dissipation (ν) inside the sediment is related to the apparent viscosity depending on the structure of the sediment pore space, i.e., the porosity and grain diameter, as well as inertial effects when the flow is turbulent. A value ν/ν0 between 1 and 20 (ν0 is kinematic viscosity of water) has been considered. Turbulence penetration into the sediment is parametrized by the Reynolds number Re = UL/ν and the relative penetration velocity W/U, where U=amplitude of the velocity pulse; and W=penetration velocity; L = WT=wave length of the velocity pulse; and T is its period. Amplitudes of vertical velocity components inside the sediment and their autocorrelation functions are computed, and the results are used to estimate eddy viscosity inside the sediment pore system as a function of depth. Diffusivity in the sediment pore system is inferred by using turbulent or molecular Schmidt numbers. Turbulence penetration from flowing water can enhance the vertical diffusion coefficient in a sediment bed by an order of magnitude or more. Penetration depth of turbulence is higher for low frequency velocity pulses. Vertical diffusivity inside the pore system is shown to decrease more or less exponentially with depth below the sediment/water interface. Vertical diffusivities in a sediment bed estimated by the “velocity pulse model” can be used in pore water quality models to describe vertical transport from or into flowing surface water. The analysis has been conducted for a conservative material, but source and sink terms can be added to the vertical transport equation.  相似文献   

10.
Effect of Wet-Dry Cycling on Swelling and Hydraulic Conductivity of GCLs   总被引:2,自引:0,他引:2  
Atterberg limits, free swell, and hydraulic conductivity tests were conducted to assess how wet-dry cycling affects the plasticity and swell of bentonite, and the hydraulic conductivity of geosynthetic clay liners (GCLs) hydrated with deionized (DI) water (pH 6.5), tap water (pH 6.8), and 0.0125-M CaCl2 solution (pH 6.2). The plasticity of bentonite hydrated with DI water increased during each wetting cycle, whereas the plasticity of bentonite hydrated with tap water and CaCl2 decreased during each wetting cycle. Wet-dry cycling in DI water and tap water had little effect on swelling of the bentonite, even after seven wet-dry cycles. However, swelling decreased dramatically after two wetting cycles with CaCl2 solution. Hydraulic conductivity of GCL specimens remained low during the first four wetting cycles (~1 × 10?9 cm∕s). However, within five to eight cycles, the hydraulic conductivity of all specimens permeated with the 0.0125-M CaCl2 solution increased dramatically, to as high as 7.6 × 10?6 cm∕s. The hydraulic conductivity increased because cracks, formed during desiccation, did not fully heal when the bentonite rehydrated. In contrast, a specimen continuously permeated for 10 months with the 0.0125-M CaCl2 solution had low hydraulic conductivity (~1 × 10?9 cm∕s), even after eight pore volumes of flow.  相似文献   

11.
The hydraulic conductivity (k) of specimens from columns containing initially dry sands mixed with bentonite slurries was measured. The mixed specimens represented a range in void ratios (0.672 ≤ e ≤ 3.94) and bentonite contents (0.61% ≤ BC ≤ 7.65%, by dry weight). The measured k values, which ranged from 2.4×10?7?cm/s to 6.8×10?4?cm/s, correlated poorly with the total void ratio (e) of the specimens, due to the complicating effect of the bentonite in the sand-bentonite slurry mixtures. However, the measured k values correlated better with the void ratio of the bentonite (eb), which is consistent with the results of previous studies involving permeation of compacted bentonite and sand-bentonite specimens, even though the range in values of eb in this study (42.5 ≤ eb ≤ 127) was much higher than that previously reported. The relatively large range in eb values for the sand-bentonite slurry mixtures was also consistent with the relatively large range in measured k values, which are about one to seven orders of magnitude higher than values of k commonly reported for compacted sand-bentonite mixtures, despite similar bentonite contents. In terms of bentonite content, addition of more than 3% bentonite via slurry injection and mixing with the sands was successful in reducing the k of the unmixed sands (9.4×10?3?cm/s ≤ k ≤ 5.4×10?2?cm/s) by as much as four orders of magnitude to values less than 1.0×10?6?cm/s.  相似文献   

12.
This paper presents an investigation of the performance of the hydraulic and sediment removal of a flushing system in a detention basin. A hydraulic criterion for the design of the flushing system is proposed. An equation for the maximum height of the flushing wave front as a function of the distance from the gate, the initial water depth in the chamber, and the chamber length is proposed. The Lauber and Hager equation for the maximum velocity of a flushing wave is also verified. Effective removal of sediment particles on the bed is a direct function of the bed shear stress generated by the flushing flow. This study reveals that the bed shear stress on the channel bed induced by the flushing flow can be attributed to the hydrostatic pressure, the flow acceleration, and the convection-induced momentum. The shear stress associated with fluid distortion and the turbulent viscosity may be neglected. Significant error would occur if the hydrostatic pressure component were used as an estimate of the bed shear stress on a mild slope channel. The energy slope method may provide an overestimate of the bed shear stress. Finally, an appropriate equation to evaluate the maximum bed shear stress is proposed.  相似文献   

13.
Particle Densimetric Froude Number for Estimating Sediment Transport   总被引:2,自引:0,他引:2  
It has been established that for ratios of flow depth to bed particle diameter less than ten (flow on very rough boundaries) neither the Reynolds number of the solid loose particles at a stream bed nor the Shields parameter are adequate variables to predict critical flow conditions for the initiation of motion. A particle densimetric Froude number F? = U/[(s?1)gD]1/2 (where U=mean velocity, s=ratio of sediment and fluid densities, g=acceleration due to gravity, and D=characteristic diameter of bed particle) is here proposed as an alternative criterion to predict hydraulic conditions for the initiation of motion. Values of critical F? were computed after calibration with available experimental data sets. After the critical conditions for the initiation of particle motion were exceeded, transport of bed particles was established. In order to evaluate the performance of a transport equation that contains F? in sediment transport, a set of the most employed formulations to estimate bed material transport in steep slope macrorough flows were tested. The comparison of the results shows that F? can be used to accurately predict sediment discharge.  相似文献   

14.
The quantitative effects of hydrodynamic conditions on sediment oxygen demand (SOD) under smooth surface conditions were investigated using the following three practical and compact experimental systems: (1) a continuous flow system containing sediment core samples; (2) a rectangular flume system; and (3) a system combining the first two. Experimental results demonstrated that SOD showed a monotonically increasing tendency as the flow velocity increased with reduction of the thickness of the diffusive boundary layer. The experimental results were compared with numerical models theoretically relating SOD and flow velocity under smooth surface conditions. The features of each experimental system are discussed. The continuous flow system is advantageous because it simultaneously produces a steady state and different dissolved oxygen (DO) conditions. The rectangular flume system is suitable for fundamental studies of hydrodynamic effects on SOD because it makes controlling hydrodynamic conditions easy, while the combined system is appropriate for studying the effect of microscopic phenomena on exchange rates, as it can reproduce natural microscopic physicochemical processes.  相似文献   

15.
Experimental Study of Bed Load Transport through Emergent Vegetation   总被引:1,自引:0,他引:1  
Vegetation is an important agent in fluvial geomorphology and sedimentary processes, through its influence on the local hydraulics that determine sediment transport. Within stands of emergent vegetation, bed shear is substantially reduced through the absorption of momentum by drag on the stems. This stimulates deposition of sediment and reduces capacity for bed load transport. The effect of emergent vegetation on hydraulic parameters (including equilibrium bed gradient, flow depth, and velocity) and on bed load transport rate has been investigated experimentally for one sediment size, stem diameter, and stem spacing. Bed load transport rate was found to be closely related to bed-shear stress, which must be estimated by partitioning total flow resistance between stem drag and bed shear.  相似文献   

16.
Traditionally, dissolved oxygen (DO) fluxes have been calculated using the thin-film theory with DO microstructure data in systems characterized by fine sediments and low velocities. However, recent experimental evidence of fluctuating DO concentrations near the sediment-water interface suggests that turbulence and coherent motions control the mass transfer, and the surface renewal theory gives a more mechanistic model for quantifying fluxes. Both models involve quantifying the mass transfer coefficient (k) and the relevant concentration difference (ΔC). This study compared several empirical models for quantifying k based on both thin-film and surface renewal theories, as well as presents a new method for quantifying ΔC (dynamic approach) that is consistent with the observed DO concentration fluctuations near the interface. Data were used from a series of flume experiments that includes both physical and kinetic uptake limitations of the flux. Results indicated that methods for quantifying k and ΔC using the surface renewal theory better estimated the DO flux across a range of fluid-flow conditions.  相似文献   

17.
A study on the hydraulic and sediment conditions at the Tacoma Narrows Bridge, in Washington State, was carried out to examine the stability of the bed material around the bridge caissons. Specifically, this was conducted around the east caisson, where the maximum velocities around either of the two caissons are experienced. This was performed for the peak tidal exchange event of May 27th to 28th, 2002. During this max flow event, multibeam surveyed bathymetry and three-dimensional acoustic doppler current profiler velocity data were collected around the east caisson in the course of both the flood and ebb. The surface of the bed material surrounding the east caisson was videotaped during the slack conditions following the yearly maximum flow event, and used to determine the particle size distribution and spatial arrangement of those distributions around the caisson. This was done by lowering a submersible video camera and appropriate lighting to the bottom of the Narrows, a depth of approximately 45?m. Flow and sediment observations were coupled to determine the commencement of sediment motion for different size classes of sediment. Two methods were utilized to calculate friction velocity in order to assess the stability of different bed particle size fractions during these high flow conditions. Friction velocity was first calculated from measured velocity profiles at various locations around the east caisson. The second method was based on the concept of a free stream power-law expression for depth-averaged velocity. Stability was then examined using the critical shear stress concept and captured video data of the bed. General results showed the particles ? 30?mm in diameter were in motion during the flood and ebb. The work is here presented as a case study because of the unique large-scale flow conditions that are present around the east caisson of the Tacoma Narrows Bridge.  相似文献   

18.
This paper presents the first detailed examination of the dependence of graded bed stability on antecedent flow conditions (stress history). Thirty-three experiments, including repetitions, were undertaken where a bimodal sediment bed (D50 = 4.8?mm, σg = 2.1) was conditioned for between 30 and 5,760?min. The antecedent shear stress ranged from 53 to 91% of the critical shear stress for the D50 of the sediment bed. Data indicate that higher antecedent shear stresses reduce bed stability due to selective entrainment of the fine matrix; conversely, extending the duration of the antecedent conditioning phase increases bed stability due to local particle rearrangement. Analysis of the competitive effects indicates that particle rearrangement may be of greater relative importance than compositional change. Overall, the paper demonstrates the significance of antecedent flow conditions for hydraulic engineering and research, including the modeling of bed-load transport during flood events and the need for standardizing the flume-based experimental procedure.  相似文献   

19.
This paper presents a comprehensive analysis of suspended sediment transport in open channels under various flow conditions through a kinetic-model-based simulation. The kinetic model, accounting for both sediment-turbulence and sediment-sediment interactions, successfully represents experimentally observed diffusion and transport characteristics of suspended sediments with different densities and sizes. Without tuning any model coefficients, the nonmonotonic concentration distribution and the noticeable lag velocity with a negative value close to the wall are reasonably reproduced. Examination of flow conditions typical of suspension dominated rivers shows that the conventional method may overestimate or underestimate unit suspended-sediment discharge, depending on the Rouse number, sediment size, as well as shear velocity. The error may be less than 20% for dp<0.5?mm and might exceed 60% for dp>1.0?mm under typical flow conditions where shear velocity ranges from 1.0?to?12.5?cm/s and flow depth ranges from 1.0?to?5.0?m.  相似文献   

20.
Variable pressure at the sediment/water interface due to surface water waves can drive advective flows into or out of the lake bed, thereby enhancing solute transfer between lake water and pore water in the lake bed. To quantify this advective transfer, the two-dimensional (2D) advection-dispersion equation in a lake bed has been solved with spatially and temporally variable pressure at the bed surface. This problem scales with two dimensionless parameters: a “dimensionless wave speed” (W) and a “relative dispersivity” (λ). Solutions of the 2D problem were used to determine a depth-dependent “vertically enhanced dispersion coefficient” (DE) that can be used in a 1D pore-water quality model which in turn can be easily coupled with a lake water quality model. Results of this study include a relationship between DE and the depth below the bed surface for W>50 and λ ? 0.1. The computational results are compared and validated against a set of laboratory measurements. An application shows that surface waves may increase the sediment oxygen uptake rate in a lake by two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号