首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit and rehabilitation of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting such damage as voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP–adhesive-concrete medium: Voids and debonding areas will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured using a plane-wave reflectometer. The measured properties were then used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting damage by using plane waves, as the reflection contribution from the voids and debonding is very small compared to that from the jacketed column. In order to alleviate this difficulty, dielectric lenses were designed and fabricated, focusing the EM wave on the bonding interface. Finally, three concrete columns were constructed and wrapped with glass–FRP jackets with various voids and debonding conditions artificially introduced in the bonding interface. Using the proposed EM imaging technology involving the especially designed and properly installed lenses, these voids and debonding areas were successfully detected. This technology can be used to assess the jacket bonding quality during the initial jacket installation stage and to detect debonding between the column and the jacket caused by earthquake and other destructive loads.  相似文献   

2.
This paper studies the cross-sectional behavior of steel columns strengthened with fiber-reinforced polymers (FRPs). The composite column is constructed by wrapping the steel I-section column with epoxy-saturated glass- and carbon-FRPs (GFRP and CFRP) sheets in the transverse direction and subsequently filling the voids between the FRP and the steel with concrete. Experimental tests were performed on stub columns under axial compression including one to three CFRP wraps. A corner treatment technique, to avoid stress concentration at the corners and to improve confinement efficiency, was also investigated. A simplified analytical model was developed to predict the axial behavior of the composite columns. Experimental results showed significant enhancement in the behavior of the composite columns primarily attributable to the confinement mechanism imposed by the FRP jacket and concrete. Increasing the corner radius resulted in higher compressive strength of the confined concrete and ultimate axial strain of the composite columns. Good agreement between the analytically developed axial load-displacement relationships and the test data indicates that the model can closely simulate the cross-sectional behavior of the composite columns.  相似文献   

3.
Although previous research has demonstrated the improvement in performance of reinforced concrete structures enhanced with externally applied carbon fiber reinforced polymers (CFRP), the effect of transverse impact damage on the strength of the CFRP enhancements is unknown, and no guidelines have been provided that describe which impact events warrant CFRP repair or replacement. The impact events, such as dropped tools, collisions, and low-speed projectiles may cause critical damage to the epoxy matrix and fibers that is undetectable through visual inspection. The purpose of this research is to provide insight into the level of transverse impact needed to initiate critical damage in wet layup CFRP enhancements, which will serve as a guideline for inexpensive and immediate damage assessments. To simulate a variety of impact events, impactors (tups) of different sizes and shapes were dropped from several heights. The impacts were performed with a guided drop-weight apparatus, designed to achieve free-fall behavior. The results show that impacts that only cause indention of the FRP surface do not significantly affect the tensile strength, but impacts that cause crushing of the epoxy (seen as whitish areas) can indicate as much as a 63% residual tensile strength. Furthermore, for the test conditions considered, tests showed that impacts with a peak impact pressure greater than 21?MPa (3,000?psi) reduced the tensile strength of the CFRP.  相似文献   

4.
The structural behavior of masonry walls laterally strengthened with externally bonded composite materials to resist out-of-plane loads is theoretically and experimentally studied. Hollow concrete block masonry walls and solid autoclaved aerated concrete (AAC) block masonry walls are examined. A theoretical model that accounts for the cracking and the physical nonlinear behavior, the debonding of the composite layers, the arching effect, the interfacial stresses, and the unique modeling aspects of the laterally strengthened wall is presented. The experimental study includes loading to failure of 4 laterally strengthened masonry walls and 2 control walls. The experimental and analytical results point at the unique aspects of the lateral strengthening of masonry walls with composite materials. In particular, they reveal and explain the premature shear failure in laterally strengthened hollow concrete blocks walls and, on the other hand, demonstrate the potential of lateral fiber-reinforced polymer strengthening of AAC masonry walls. The laterally strengthened AAC masonry walls reveal improved strength, deformability, and integrity at failure characteristics.  相似文献   

5.
This paper presents an integrated micromechanical–structural framework for local–global nonlinear and time-dependent analysis of fiber reinforced polymer composite materials and structures. The proposed modeling approach involves nested multiscale micromodels for unidirectional and continuous filament mat (CFM) layers. In addition, a sublaminate model is used to provide a three-dimensional (3D) effective anisotropic and continuum response to represent the nonlinear viscoelastic behavior of a through-thickness periodical multilayered material system. The 3D multiscale material framework is integrated with a displacement-based finite-element code to perform structural analyses. The time-dependent responses in the unidirectional and CFM layers are exclusively attributed to their matrix constituents. The Schapery nonlinear viscoelastic model is used with a newly developed recursive–iterative integration method applied for the polymeric matrix. The fiber medium is linear and transversely isotropic. The in situ long-term response of the matrix constituents is calibrated and verified using long-term creep coupon tests. Good prediction ability is shown by the proposed framework for the overall viscoelastic behavior of the layered material. Material and geometric nonlinearities of I-shape thick composite columns, having vinylester resin reinforced with E-glass unidirectional (roving) and CFM layers, are studied to illustrate the capability of the multiscale material-structural framework. Nonlinear elastic behavior and creep collapse analyses of the I-shape column are performed. The recursive–iterative and stress correction algorithms, which are implemented and executed simultaneously at each material scale, enhance equilibrium and avoid misleading convergent states.  相似文献   

6.
Structural analysis of composite structures subjected to dynamic loads requires detailed knowledge of the mechanical behavior of component materials under high strain-rates. This paper presents the results of tests to investigate the tensile dynamic behavior of a pultruded E-glass/polyester composite used in a steel-less blast protection barrier. The described activity is part of the Security of Airport Structures research project, focusing on structural protection of airport infrastructures against disruptive action. Modified Hopkinson bars and hydropneumatic machine devices were used to conduct strain-rate controlled tensile failure tests on glass fiber-reinforced polymer specimens. The results are discussed and then implemented within a viscoplasticity constitutive model and a strain-rate-dependent failure criterion in order to simulate the exhibited mechanical behavior.  相似文献   

7.
This work addresses the assessment of the electromagnetic disturbance induced by a composite barrier—fencing airport structures—to radio-communication electromagnetic waves. The barrier is composed of glass fiber reinforced polymer (GFRP) tubular elements installed into a concrete base. Based on the electromagnetic properties of constituent materials, numerical analyses describing the electromagnetic phenomenon were carried out, simulating the barrier submerged into the electromagnetic field of interest. Furthermore, full-scale experimental tests were also performed on samples of the barrier in an anechoic chamber, reproducing the electromagnetic field generated by the radio-communication antennas. Both the numerical and experimental studies confirm that composites and, in particular, GFRPs result in low interference with electromagnetic fields. The main contribution to the interference is generated by the concrete base. However, it may be significantly reduced by using particular strategies, for example, in very high frequency omnidirectional range systems, by placing the concrete basement under the counterpoise level of the antennas.  相似文献   

8.
An effective method for combined environmental protection and structural restoration of wood piles in waterfront facilities is not available. The objective of the study presented in this paper is to survey the available methods for wood pile protection and structural restoration with the intent of developing an effective method. In addition to reviewing the available repair methods, a field inspection of a harbor in Maine was conducted to assess existing technologies. A wood pile repair method that utilizes bonded fiber-reinforced polymer (FRP) composite shells and a grouting material is proposed. Fiber, resin, adhesive, coating, and grouting materials are systematically analyzed to deliver the required system performance. Two fabrication methods for the FRP composite shells are discussed based on the experience gained in the fabrication of laboratory prototypes. Then a step-by-step procedure amenable for field installation is proposed, and a preliminary cost analysis is conducted to assess the feasibility of the proposed system.  相似文献   

9.
An experimental study was conducted to investigate the efficiency of FRP jackets in upgrading the seismic behavior of lightly reinforced concrete prismatic members previously damaged under a combination of axial compression and a reversed cyclic lateral displacement history simulating earthquake effects. The test program comprises 13 cantilever prismatic specimens, which, owing to substandard reinforcing details representative of older construction practices in southern Europe, were susceptible to various undesirable modes of damage such as web-shear cracking, longitudinal bar buckling, or lap-splice failure. After repair, the specimens were retested using the same load combination. The efficiency of the repair options considered in the study, which refer to alternative strengthening systems (with glass or carbon wraps), was investigated with reference to the design parameters of the intervention, the type of the applied lateral displacement history, and the mode of failure that had occurred previously in the initial phase of the tests. The results provided valuable insight regarding participation of the FRP jackets in the various mechanisms of resistance, their ability to reverse the effect of initial damage, and to impart deformation capacity to the structural member.  相似文献   

10.
A composite system consisting of rectangular glass fiber reinforced polymer (GFRP) tubes connected to concrete slabs, using GFRP dowels has been developed. Seven beam specimens have been tested, including hollow and concrete-filled GFRP tubes with and without concrete slabs. Beam–slab specimens had two different shear span-to-depth ratios and one specimen had carbon–fiber reinforced polymer (CFRP)-laminated tension flange for enhanced flexural performance. Additionally, three double-shear GFRP tube-slab assemblies have been tested to assess the shear behavior of GFRP dowels, in both hollow and concrete-filled tubes. Three compression stubs of concrete-filled tubes were also tested by loading them parallel to the cross-section plane, to study GFRP web buckling behavior. The study showed that GFRP dowels performed well in shear and that composite action is quite feasible. While hollow tubes can act compositely with concrete slabs, more slip between the tube and slab would occur, compared to a concrete-filled tube-slab system. Simplified models are proposed to predict critical web buckling load of fiber reinforced polymer (FRP) tubes. Based on the models, a critical shear span-to-depth ratio of 4 was determined, below which web buckling may occur before flexural failure.  相似文献   

11.
This paper presents the development of a test method that can be used to test the bond capacity of carbon fiber-reinforced polymer (CFRP) composites bonded to concrete. The rationale for the selection of the test method is described along with the results of the experimental work used to refine the test configuration and procedures. The research objectives were to develop a test method that (1) can be used to evaluate the durability of the FRP-concrete bond (adhesion failure mode); (2) facilitate multiple replicate for statistical validation; (3) is simple to conduct; and (4) provides comparative results that are easy to interpret. The method utilizes a small concrete beam modeled after the modulus of rupture test, which is typically used to measure concrete tensile strength. A number of small beam sizes and loading configurations were considered during the investigation. The final recommended specimen configuration is 4×4×14?in. (100?mm×100?mm×356?mm) beam with a half-depth saw cut at midspan. A 1 in. (25 mm) wide by 8 in. (203 mm) long CFRP strip is applied to the tension face of the beam over the saw cut. The specimen is loaded until failure with a single concentrated load at midspan over a 12 in. (305 mm) span. For durability testing, samples are prepared with the same materials and exposed to the desired accelerated conditioning protocol. Companion unexposed samples are also tested and the relative decrease in capacity is reported as the load to failure of the exposed specimen to that of the control specimen.  相似文献   

12.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

13.
As glass fiber-reinforced polymer (GFRP) bridge decks are becoming a feasible alternative to the traditional concrete bridge decks, an innovative methodology to evaluate the in situ conditions are vital to GFRP bridge decks’ full implementation. Ground penetrating radar (GPR) typically performs well in detecting subsurface condition of a structural component with moisture pockets trapped within the material. On the other hand, infrared thermography (IRT) is traditionally known for its ability to detect air pockets within the material. In order to evaluate both nondestructive testing methods’ effectiveness for subsurface condition assessment of GFRP bridge deck, debonds of various sizes were embedded into a GFRP bridge deck module. A 1.5 GHz ground-coupled GPR system and a radiometric infrared camera were used to scan the deck module for condition assessment. Test results showed that both GPR and IRT retained their respective effectiveness in detecting subsurface anomalies. GPR was found to be capable of detecting water-filled defects as small as 5×5?cm2 in plan size, and as thin as 0.15 cm. Furthermore, tests on additional specimens showed that the GPR system offers some promise in detecting bottom flange defects as far down as 10 cm deep. IRT, on the other hand, showed that it is capable of finding both water-filled and air-filled defects within the top layers of the deck with solar heating as main source of heat flux. While test results showed IRT is more sensitive to air-filled defects, water-filled defects can still be detected with a large enough heating mechanism. The experiments showed that a more detailed and accurate assessment can be achieved by combining both GPR and IRT.  相似文献   

14.
15.
Composite materials are being used with notable effectiveness to increase and upgrade the flexural load carrying capacity of reinforced concrete (RC) members. Near-surface mounted (NSM) is one of the most promising strengthening techniques, based on the use of carbon fiber-reinforced polymer (CFRP) laminates. According to NSM, the laminates are fixed with epoxy based adhesive into slits opened into the concrete cover on the tension face of the elements to strength. Laboratory tests have shown that the NSM technique is an adequate strengthening strategy to increase the flexural resistance of RC slabs. However, in RC slabs of low concrete strength, the increase of the flexural resistance that NSM can provide is limited by the maximum allowable compressive strain in the compressed part of the slab, in order to avoid concrete crushing. This restriction reduces the effectiveness of the strengthening, thus limiting the use of the NSM technique. A new thin layer of concrete bonded to the existing concrete at the compressed region is suitable to overcome this limitation. Volumetric contraction due to shrinkage and thermal effects can induce uncontrolled cracking in the concrete of this thin layer. Adding steel fibers to concrete [steel fiber-reinforced concrete (SFRC)], the postcracking residual stress can be increased in order to prevent the formation of uncontrolled crack patterns. In the present work, the combined strengthening strategy, a SFRC overlay and NSM CFRP laminates, was applied to significantly increase the flexural resistance of existing RC slabs. Experimental results of four-point bending tests, carried out in unstrengthened and strengthened concrete slab strips, are presented and analyzed.  相似文献   

16.
Lightweight and heavy-duty fiber-reinforced polymer (FRP) composite honeycomb sandwich structures have been increasingly used in civil infrastructure. Unique cellular core configurations, such as sinusoidal core, have been applied in sandwich construction. Due to specific core geometry, the solutions for core effective stiffness properties are not readily available. This paper presents a mechanics of materials approach to evaluate the effective stiffness properties of sinusoidal cores. In particular, the internal forces of a curved wall in a unit cell are expressed in terms of resultant forces, and based on the energy method and principle of equivalence analysis, the in-plane stiffness properties of sinusoidal cores are derived. Both finite-element modeling and experimental testing are carried out to verify the accuracy of the proposed analytical formulation. To illustrate the present analytical approach as an efficient tool in optimal analysis and size selection of sinusoidal cores, several design plots are provided and discussed. The simplified analysis and formulation presented for sinusoidal cores can be used in design application of FRP honeycomb sandwich and optimization of efficient cellular core structures.  相似文献   

17.
Most existing models for evaluating the strength of fiber-reinforced polymer (FRP)-confined concrete columns are based in an early work. In this paper, a new model based on the Hoek-Brown failure criterion is proposed. The existing strength models for FRP-confined circular and square concrete columns are reviewed, evaluated, and compared with the proposed model. An updated database that includes a large number of test data are then used to evaluate the models. Comparisons between the models and the test results demonstrate the accuracy of the proposed model. Apart from this improved accuracy, the proposed model also has a unified form for both circular and square columns, and can be used to predict the strength of columns that have existing damage or cracks. Test data for FRP-repaired concrete columns are collected from the literature and used to evaluate and demonstrate the performance of the proposed model in predicting the strength of FRP-confined deficient columns.  相似文献   

18.
The feasibility and efficiency of a seismic retrofit intervention using externally bonded fiber-reinforced polymer composites on existing reinforced concrete frame systems, designed prior to the introduction of modern standard seismic design code provisions in the mid-1970s, are herein presented, based on analytical and experimental investigations on beam-column joint subassemblies and frame systems. A multilevel retrofit strategy, following hierarchy of strength considerations, is adopted to achieve the desired performance. The expected sequence of events is visualized through capacity-demand curves within M-N performance domains. An analytical procedure able to predict the enhanced nonlinear behavior of the panel zone region, due to the application of CFRP laminates, in terms of shear strength (principal stresses) versus shear deformation, has been developed and is herein proposed as a fundamental step for the definition of a proper retrofit solution. The experimental results from quasi-static tests on beam-column subassemblies, either interior and exterior, and on three-storey three-bay frame systems in their as-built and CFRP retrofitted configurations, provided very satisfactory confirmation of the viability and reliability of the adopted retrofit solution as well as of the proposed analytical procedure to predict the actual sequence of events.  相似文献   

19.
Composite Tube Hinges   总被引:1,自引:0,他引:1  
This paper is concerned with self-powered, self-latching tube hinges, made by cutting three parallel slots in a thin-walled carbon fiber reinforced plastic tube with a circular cross section. Thus, a hinge consists of two short tubes connected by three transversally curved strips of material (known as tape springs). A particular tube hinge design is considered, with a diameter of about one-third that of the hinges used previously; this requires the tape springs to reach strains close to failure when the hinge is folded. Three analyses of the peak strains in a tube hinge are presented. The first analysis obtains general analytical expressions for the longitudinal fold radius of a tape spring and the associated peak fiber strains. The second analysis is a finite-element simulation of the folding of a single tape spring and the third analysis is a simulation of a complete tube hinge. It is found that the largest fiber strains in one- and two-ply hinges can be predicted analytically with very good accuracy. It is also found that the contact and interaction between the three tape springs that form a tube hinge, modeled in the third analysis, do not affect the peak strains significantly.  相似文献   

20.
Despite the improved performance of fiber-reinforced plastic (FRP)-retrofitted bridges, residual deformations in the event of an earthquake are inevitable. Little consideration is currently given to these deformations when assessing seismic performance. Moreover, important structures are currently required not only to have high strength and high ductility but also to be usable and repairable after high intensity earthquakes. This paper presents a definition of an FRP-RC damage-controllable structure. An intensive study of 109 bridge columns, extracted from recent research literature on the inelastic performance of FRP retrofitted columns with lap-splice deficiencies, flexural deficiencies, or shear deficiencies, is used to evaluate the recoverability of such retrofitted columns. The residual deformation, as a seismic performance measure, is used to evaluate the performance of 39 FRP-retrofitted RC columns from the available database. Based on this evaluation, a requirement for the recoverable and irrecoverable states of FRP-RC bridges is specified. Finally, the Seismic Design Specifications of Highway Bridges for RC piers is adapted to predict the residual deformations of FRP-RC columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号