首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of inoculum level of Lactobacillus curvatus on Nham fermentation was studied. Nham inoculated with L. curvatus at 104 (LC104) and 106 cfu/g (LC106) exhibited a higher rate of fermentation than naturally fermented Nham (control) as indicated by greater rate of pH drop, lactic acid production, and changes in protein compositions. Based on the pH, the fermentation was completed within 72, 48 and 36 h for control, LC104, and LC106, respectively. Higher extent of proteolysis and lipolysis were observed during fermentation of Nham inoculated with starter bacteria (P<0.05). Due to higher acid production rate and extent, texture development of inoculated Nham was more rapid. Inoculated Nham exhibited higher TPA hardness and adhesiveness but lower fracturability than naturally fermented Nham (P<0.05). In terms of acceptability, control and LC104 had higher ratings on the overall liking than LC106 (P<0.05). However, LC104 was better accepted than control in terms of flavour, sourness, saltiness, and texture. Unusual smell was detected only in Nham inoculated at 106 cfu/g. Based on physico-chemical properties and consumer acceptability, L. curvatus is a potential starter for Nham fermentation. However, inoculation of L. curvatus at high level may cause off-flavour in the product.  相似文献   

2.
Biogenic amines are of concern for sausage due to their toxicological effects on nervous, blood pressure, gastric and intestinal systems. In this study, the influence of raw pork meat quality and starter culture inoculation on biogenic amines accumulation in Nham, a Thai traditional fermented pork, were studied. Before Nham processing, pork meat was stored at 30 °C for 6 h, and at 4 and −20 °C for 2 days. Formation of biogenic amines (cadaverine, putrescine, histamine and tyramine) was significantly higher in Nham processed from stored meat. Accumulation of these biogenic amines in Nham reduced significantly by the addition of Lactobacillus plantarum BCC 9546, a commercial Nham starter culture. The results highlight the importance of using fresh meat products and the inclusion of an appropriate starter culture to minimise the formation of biogenic amines during the process of Nham fermentation.  相似文献   

3.
Staphylococcus aureus is one of the most prevalent bacterial pathogens causing food-borne disease worldwide. Staphylococcal food poisoning is caused by ingestion of staphylococcal enterotoxins (SEs) pre-formed in the implicated food. In this study, the incidences of S. aureus and classical SEs (SEA-SEE) contamination in ‘Nham’, a traditional Thai fermented pork product, were determined. Among 155 Nham samples tested, as high as 39.35% of the samples were positive for S. aureus (2–3500 MPN/g), but none were positive for the SEs. The risk factors for S. aureus contamination were highly correlated with the manufacturer and the pH of the product. A predictive model determined the probability of the presence of S. aureus to be ≤0.24 at the pH ≤ 4.6. During the fermentation process, the number of S. aureus slightly increased in the first day and decreased afterward. S. aureus counts continued to decrease when Nham was stored refrigerated. The negative result for enterotoxins and low counts of S. aureus in Nham surveyed in this study, and reduction of the pathogen counts during fermentation and storage suggested that there is very low risk of staphylococcal food poisoning from consuming properly fermented Nham.  相似文献   

4.
Acid-sensitive mutants of Pediococcus acidilactici BCC 9545, a starter culture of the Thai fermented pork sausage nham, were isolated as spontaneous neomycin resistant mutants. The mutants generally produced less acid and acidified the culture media less than the parent strain in a 72 h culturing period. Interestingly, the ATPase activities of the mutants did not differ considerably from that of the parent strain in acidic conditions. It was also found that the internal pH values of the mutant strains were somewhat lower in neutral environment, while at pH 5.0 their internal pHs were significantly lower compared to the parent's. Inhibiting the H+-ATPase activities in energized cells by N,N′-dicyclohexyl carbodiimide also revealed that protons were leaking from the mutants at neutral pH, which increased under acidic conditions. In contrast, the parent strain exhibited a smaller proton leak and only under acidic conditions. The membrane fatty acid analysis of the mutants indicated that under acidic conditions the mutants had a significantly smaller major unsaturated/saturated fatty acids ratio ((C18:1 + C18:3n6)/(C16:0 + C18:0)) compared to the parent strain's membrane. Taken together, these observations suggest there is a reasonable possibility that the membrane fatty acid profile differences in the mutants resulted in their acid-sensitivity.  相似文献   

5.
Growth of Lactobacillus plantarum 70810, Lactobacillus rhamnosus 6005 and a commercial yogurt starter culture in soymilk was investigated in the present study. It was found that the fermented soymilk using L. plantarum 70810 had significantly higher viable cell counts, water holding capacity (WHC, 88.27%), apparent viscosity (1840.35 mPa s) and exopolysaccharide (EPS) amount (832.15 mg/L) than the other two starter cultures in soymilk. Direct observation of microstructure in fermented soymilk indicated that the network structures of EPS-protein could improve the texture of fermented soymilk. Considering that the beneficial effects of L. plantarum 70810 in fermented soymilk, volatile compounds in fermented soymilk were further identified. Then the growth and fermentation characteristics of L. plantarum 70810 including changes in viable cell counts, pH, titratable acidity, apparent viscosity and EPS production during storage were investigated. In comparison to original soymilk base, the concentrations of the characteristic flavor compounds for fermented soymilk using L. plantarum 70810 increased, whereas hexanal, 2-pentylfuran and 2-pentanone in relation to beany flavor of soymilk decreased. In addition, fermented soymilk using L. plantarum 70810 maintained high viable cell count (>108 cfu/mL), apparent viscosity (966.43 mPa s) and amounts of EPS (635.49 mg/mL) during storage at 4 °C for 21 days.  相似文献   

6.
Lactobacillus plantarum 423, producer of bacteriocin 423, Lactobacillus curvatus DF38, producer of curvacin DF38, and a bacteriocin-negative mutant of L. plantarum 423 (423m) were evaluated as starter cultures in the production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis). Growth of L. plantarum 423 and L. curvatus DF38 was best supported in Blesbok salami, as revealed by the highest growth rate during sweating, cold smoking and maturation, and final cell numbers after 70 days (1 × 108 and 5 × 107 cfu/g, respectively). Growth of Listeria innocua was the best suppressed in Blesbok salami fermented with L. plantarum 423 and L. curvatus DF38. Growth of L. innocua in horse salami was best suppressed when fermented with L. curvatus DF38. The final pH of salami fermented with L. plantarum 423 and L. plantarum 423m was slightly lower (4.4) compared to the pH of salami produced with L. curvatus DF38 (pH 4.7). No significant differences (P > 0.05) were recorded by a trained sensory taste panel amongst the three starter cultures regarding colour and venison like aroma. Horse, Blesbok and Springbok salami were rated significantly higher (P ? 0.05) in salami flavour than mutton salami, which was rated the lowest for this attribute. Blesbok salami was rated the highest for sour meat aroma, while beef salami was rated the lowest. Springbok salami was rated the highest in terms of oily mouth feel. Beef salami had the most compact structure and horse salami the softest structure of all meat types fermented. In general, salami produced with L. plantarum 423 yielded the best sour meat aroma, colour, texture, venison like flavour, sour meat flavour and oily mouthfeel and is considered superior to the L. plantarum mutant (strain 423m) and L. curvatus DF38.  相似文献   

7.
Kimchi fermentation usually relies upon the growth of naturally-occurring various heterofermentative lactic acid bacteria (LAB). This sometimes makes it difficult to produce kimchi with uniform quality. The use of Leuconostoc mesenteroides as a starter has been considered to produce commercial fermented kimchi with uniform and good quality in Korea. In this study, a combination of a barcoded pyrosequencing strategy and a 1H NMR technique was used to investigate the effects of Leu. mesenteroides strain B1 as a starter culture for kimchi fermentation. Baechu (Chinese cabbage) and Chonggak (radish) kimchi with and without Leu. mesenteroides inoculation were prepared, respectively and their characteristics that included pH, cell number, bacterial community, and metabolites were monitored periodically for 40 days. Barcoded pyrosequencing analysis showed that the numbers of bacterial operational taxonomic units (OTU) in starter kimchi decreased more quickly than that in non-starter kimchi. Members of the genera Leuconostoc, Lactobacillus, and Weissella were dominant LAB regardless of the kimchi type or starter inoculation. Among the three genera, Leuconostoc was the most abundant, followed by Lactobacillus and Weissella. The use of Leu. mesenteroides as a starter increased the Leuconostoc proportions and decreased the Lactobacillus proportions in both type of kimchi during kimchi fermentation. However, interestingly, the use of the kimchi starter more highly maintained the Weissella proportions of starter kimchi compared to that in the non-starter kimchi until fermentation was complete. Metabolite analysis using the 1H NMR technique showed that both Baechu and Chonggak kimchi with the starter culture began to consume free sugars earlier and produced a little greater amounts of lactic and acetic acids and mannitol. Metabolite analysis demonstrated that kimchi fermentation using Leu. mesenteroides as a starter was completed earlier with more production of kimchi metabolites compared to that not using a starter, which coincided with the decreases in pH and the increases in bacterial cell number. The PCA strategy using all kimchi components including carbohydrates, amino acids, organic acids, and others also showed that starter kimchi fermented faster with more organic acid and mannitol production. In conclusion, the combination of the barcoded pyrosequencing strategy and the 1H NMR technique was used to effectively monitor microbial succession and metabolite production and allowed for a greater understanding of the relationships between the microbial community and metabolite production in kimchi fermentation.  相似文献   

8.
A novel Podoviridae lactic acid bacteria (LAB) phage from Nham, a Thai fermented pork sausage, is reported. From a total of 36 samples, 41 isolates of LAB were obtained and employed as hosts for the isolation of phages. From these LAB, only one phage, designated Φ 22, was isolated. The lactic acid bacterial isolate named N 22, sensitive to phage Φ 22 infection was identified by an API 50 CHL kit and N 22’s complete sequence of the 16S rDNA sequence. BLASTN analysis of the 16S rDNA sequence revealed a 99% similarity to the 16S rDNA sequence of Weissella cibaria in the GenBank database. Electron micrographs indicated that the phage head was icosahedral with head size and tail length of 92 × 50 nm and 27 nm, respectively. On the basis of the morphology, this phage belongs to the family Podoviridae. Host-range determination revealed that the phage Φ 22 was not capable of infecting the other 40 isolates of LAB and referenced Weissella strains used. A one-step growth experiment showed that the latent period and burst size were estimated at 110 min and 55 phage particles/infected cell, respectively. Furthermore, the phage was infective over a wide range of pH (pH 5.0-8.0) and the D time of Φ 22 was calculated as 88 s at 70 °C and 15 s at 80 °C. Phage titers decreased below the detection limit (20 PFU/ml) after heating for more than 60 s at 80 °C, or 20 s at 90 °C or less than 10 s at 100 °C. The results from the study of Nham revealed that Φ 22 was active against the potential starter culture (W. cibaria N 22) for Nham fermentation. Phage infection could adversely affect the fermentation process of Nham by delaying acidification when using W. cibaria N 22 as a starter. However, the results from a sensory test revealed that the panelists did not detect any defects in the final products. This is the first report on the isolation of W. cibaria phage.  相似文献   

9.
Culture-dependent and -independent approaches were applied to identify the bacterial species involved in Italian table olive fermentation. Bacterial identification showed that Lactobacillus pentosus was the dominant species although the presence of Lactobacillus plantarum, Lactobacillus casei, Enterococcus durans, Lactobacillus fermentum and Lactobacillus helveticus was observed. Rep-PCR allowed to obtain strain-specific profiles and to establish a correlation with table olive environment. PCR-DGGE (Denaturing Gradient Gel Electrophoresis) confirmed the heterogeneity of bacterial community structure in fermented table olives as well as the prevalence of L. pentosus. The strains were characterized on the basis of technological properties (NaCl tolerance, β-glucosidase activity and the ability to grow in synthetic brine and in presence of 1 g/100 mL oleuropein). L. pentosus showed a high capacity of adaptation to the different conditions characterizing the olive ecosystem. This species showed the highest percentage of strains able to grow in presence of 10 g/100 mL NaCl, oleuropein and in the synthetic brine. Moreover, all the strains belonging to L. pentosus and L. plantarum species showed a β-glucosidase activity. This study allowed both to identify the main species and strains associated to Italian table olives and to obtain a lactic acid bacteria collection to apply as starter culture in the process of olive fermentation.  相似文献   

10.
Fermented table olives (Olea europaea L.) are largely diffused in the Mediterranean area. Olives are picked at different stages of maturity and after harvesting, processed to eliminate the characteristic bitterness caused by the presence of the oleuropein glucoside and to become suitable for human consumption. The spontaneous fermentation of table olives mainly depends on lactic acid bacteria (LAB), and in particular on Lactobacillus plantarum which plays an important role in the degradation of oleuropein. The hydrolysis of oleuropein is attributed to the β-glucosidase and esterase activities of the indigenous LAB microflora. This study investigated the potential of L. plantarum strains isolated from dairy products and olives to be used as starters for fermented table olives. Forty-nine strains were typed by RAPD-PCR and investigated for the presence of the β-glucosidase (bglH) gene. The full sequence of the bglH gene was carried out. All the 49 L. plantarum strains were also tested for phage resistance. A total of six strains were selected on the basis of genotypic polymorphism, bglH gene sequence analysis, and phage resistance profile. These strains were further characterized to assess the acidifying capability, the growth at different temperatures, the tolerance to different NaCl concentrations, and the oleuropeinolytic activity. Although further characterizations are required, especially concerning the influence on sensory properties, L. plantarum proved to have the potential to be used as a debittering and fermentative agent in starter culture for fermented table olives.  相似文献   

11.
This article reports a study of how quercetin affects the capacity of Lactobacillus plantarum RM71 to ferment different media, including a chemically defined medium (CDM) and media relevant for practical fermentation processes. It is shown for the first time that quercetin exerts pH- and dose-dependent effects on the fermentation performance of L. plantarum. At an initial pH of 5.5, quercetin promoted quicker growth upon inoculation at increased quercetin concentrations, while a detrimental dose-dependent lengthening of the lag phase was observed at an initial pH of 6.5. The time course of sugar consumption and lactic acid production data tracking in pH 5.5 CDM showed that quercetin promoted quicker sugar consumption as a result of earlier sugar uptake and lactic acid production than in the control. A model wine and a similar medium with modified sugar composition were fermented with L. plantarum RM71 on quercetin. Quercetin improved several key fermentation traits for the performance of L. plantarum in food production, including accelerated fermentation of various sugars, and accelerated malolactic fermentation and lactic acid production. Quercetin was not catabolized by L. plantarum in the fermentations, so the antioxidant properties of the flavonol were protected against degradation while the bacterium improved its growth performance.  相似文献   

12.
Quality of fermented sausages is affected by acidifying lactic acid bacteria (LAB) and colour- and flavour-promoting coagulase-negative staphylococci (CNS), whether or not used as starter culture. Artisan fermented sausages are often perceived as superior to industrial variants, partially because of the specific microbiota due to spontaneous acidification, which may be considered as an artisan characteristic. Therefore, two kinds of spontaneously acidified Belgian sausages were prepared (Belgian-type salami and Boulogne sausage), but with addition of a Staphylococcus carnosus culture. The Belgian-type salami was made from pork and beef, whereas the Boulogne sausage contained pork and horse meat. In all cases, Lactobacillus sakei was the dominant LAB species present on the raw materials and during fermentation, whereas enterococci remained present in the background. Enterobacteriaceae vanished after fermentation. The CNS species diversity on the raw materials was large and differed between the pork, beef, and horse meat. Nevertheless, this species diversity was annihilated during fermentation by the added S. carnosus culture. The volatiles fraction was mainly composed of aldehydes that originated from lipid oxidation and spices-derived compounds. Aromatic compounds that are typically associated to CNS activity, such as end-products from the metabolism of branched-chain amino acids, were not present in the Belgian-type salami and only marginally present in the Boulogne sausage. In conclusion, spontaneous acidification of Belgian-type fermented sausages leads to dominance of L. sakei and is no guarantee for bacterial contribution to the aroma profile when S. carnosus is added as a starter culture.  相似文献   

13.
Nine different combinations of mugi koji (barley steamed and molded with Aspergillus oryzae) and halotolerant microorganisms (HTMs), Zygosaccharomyces rouxii, Candida versatilis, and Tetragenococcus halophilus, were inoculated into chum salmon sauce mash under a non-aseptic condition used in industrial fish sauce production and fermented at 35 ± 2.5 °C for 84 days to elucidate the microbial dynamics (i.e., microbial count and microbiota) during fermentation. The viable count of halotolerant yeast (HTY) in fermented chum salmon sauce (FCSS) mash showed various time courses dependent on the combination of the starter microorganisms. Halotolerant lactic acid bacteria (HTL) were detected morphologically and physiologically only from FCSS mash inoculated with T. halophilus alone or with T. halophilus and C. versatilis during the first 28 days of fermentation. Only four fungal species, Z. rouxii, C. versatilis, Pichia guilliermondii, and A. oryzae, were detected throughout the fermentation by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). In FCSS mash, dominant HTMs, especially eumycetes, were nonexistent. However, under the non-aseptic conditions, undesirable wild yeast such as P. guilliermondii grew fortuitously. Therefore, HTY inoculation into FCSS mash at the beginning of fermentation is effective in preventing the growth of wild yeast and the resultant unfavorable flavor.  相似文献   

14.
The diversity of lactic acid bacteria associated with Hussuwa fermentation, a Sudanese fermented sorghum food, was studied using a polyphasic taxonomical approach. Predominant strains could be well characterised based on a combination of phenotypic tests and genotypic methods such as ARDRA, rep-PCR and RAPD-PCR, as well as 16S rRNA gene sequencing of representative strains. Thus, the majority (128 of 220, 58.3%) of strains exhibited phenotypic properties typical of heterofermentative lactobacilli and of these, 100 strains were characterised more closely using the genotyping methods. The majority (97/100) strains could be characterised as Lactobacillus fermentum strains. Seventy-two of 220 strains (32.7%) showed phenotypic properties that are characteristic of pediococci. Of 41 selected strains investigated by genotyping techniques, 38 (92.7%) could be characterised as Pediococcus acidilactici strains, while three (7.3%) could be characterised as Pediococcus pentosaceus strains. The Hussuwa fermentation thus appears to be dominated by L. fermentum strains and P. acidilactici strains. For this reason, we selected representative and predominant strains as potential starter cultures for Hussuwa fermentation. These strains, L. fermentum strains BFE 2442 and BFE 2282 and P. acidilactici strain BFE 2300, were shown on the basis of RAPD-PCR fingerprinting to predominate in a model fermentation when used as starter cultures inoculated at 1 × 106 CFU/g and to lower the pH of the fermentation to below pH 4.0 within 48 h. These cultures should be studied for further development as starter preparations in pilot scale studies in actual field fermentations.  相似文献   

15.
Plaa-som is a Thai fermented fish prepared from freshwater fish and various ingredients. In this study, two strains of lactic acid bacteria (LAB) isolated from natural plaa-som fermentation were used as starter cultures: Lactobacillus plantarum IFRPD P15 and Lactobacillus reuteri IFRPD P17. These strains were used as a mixed starter culture for plaa-som using an air-drying method (laminar airflow) with sterilized rice grains as the filler. This method produced a suitable starter culture, which was maintained at 4 °C for more than 20 weeks. LAB were the dominant bacteria in the starter culture and produced high acidity from 24 h until the end of fermentation. This resulted in decreased pH in plaa-som. L. plantarum IFRPD P15 was dominant as an acidity producer, whereas L. reuteri IFRPD P17 showed an ability to suppress and eliminate pathogenic bacteria such as Escherichia coli within 24 h. The use of a single starter culture for plaa-som resulted in incomplete suppression of pathogenic bacteria and elimination of E. coli. Thus, L. plantarum IFRPD P15 and L. reuteri IFRPD P17 have great potential for use as a mixed starter culture in plaa-som fermentation and may possibly help to reduce fermentation time.  相似文献   

16.
The ability of selected lactic acid bacteria to inhibit the growth of rope-forming Bacillus strains in laboratory experiments and in wheat bread was investigated. Growth of Bacillus subtilis and Bacillus licheniformis was inhibited by Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390 in an automated turbidometry assay and in test bakings. Rope spoilage of wheat bread was inhibited by adding 20-30 g of sourdough/100 g of wheat dough if the sourdough was fermented with Lactobacillus plantarum VTT E-78076,Pediococcus pentosaceus VTT E-90390 or Lactobacillus brevis (commercial starter culture) and the pH values of sourdoughs were adjusted below 4.0 and the amount of total titratable acidity value was >12. Addition of lactic acid alone in concentrations comparable with those formed in sourdoughs did not prevent rope spoilage.  相似文献   

17.
Yongjin Hu  Wenshui Xia  Changrong Ge 《LWT》2008,41(4):730-738
To improve the characteristics and functionality, and increase the use of fish muscle, three groups mixed starter cultures (group one: Lactobacillus plantarum-15, Staphylococcus xylosus-12 and Pediococcus pentosaceus-ATCC33316 [S-PXP]; group two: Lactobacillus planatrum-15, Staphylococcus xylosus-12 and Lactobacillus casei subs casei-1.001 [S-PXC]; and group three: Staphylococcus xylosus-12, Lactobacillus casei subsp. casei-1.001 and P. pentosaceus-ATCC33316 [S-XCP]) were inoculated in minced silver carp muscle to produce a fermented fish product. During the 48 h fermentation at 30 °C, silver carp muscle inoculated with mixed starter cultures resulted in a rapid pH decrease, suppression in the increase of thiobarturic acid (TBARS) values, total volatile base nitrogen (TVB-N), trimethylamine (TMA), and the growth of spoilage bacteria and pathogens, and had higher whiteness than the control (without any starter) (P<0.05). The changes in SDS-PAGE indicated extensive hydrolysis of muscle protein occurred during fermentation. This study showed that the mixed starter cultures could substantially improve the flavor, digestibility, and nutritional value of the silver carp muscle.  相似文献   

18.
Monascus fermented soybeans (MFS) were prepared by solid state fermentation. MFS showed higher solubility than the unfermented control within the acidic pH region but showed the opposite trend at pH 7 and 9. Although the emulsifying activity index of MFS was lower than that of the control, MFS had significantly higher emulsion stability at pH 7 and 9. Significant protein hydrolysis took place during fermentation, and the proportion of peak area less than 1.35 kDa was greatly increased in MFS. Whole soymilk prepared from MFS contained monacolin K (475 μg/g), and was enriched in isoflavone aglycones. Neither homogenisation nor pasteurisation caused significant changes in the isoflavone and monacolin K contents of the Monascus fermented soymilk. Total phenol content and ABTS radical scavenging activity were significantly higher in the Monascus fermented soymilk than in the control soymilk.  相似文献   

19.
The ability of goat's milk fermented with a Lactobacillus plantarum strain B411, and in combination with commercial starter culture, to inhibit acid‐adapted (AA) and non‐acid‐adapted (NAA) environmental non‐O157 STEC strains was investigated. Acid‐adapted and NAA non‐O157 STEC strains were not inhibited in the L. plantarum‐fermented goat's milk, while the goat's milk fermented with the combination of L. plantarum and starter culture inhibited AA more than NAA non‐O157 STEC strains. Environmental acid‐tolerant non‐O157 STEC strains were not inhibited by L. plantarum, starter culture or combination of starter culture with L. plantarum unless they were subjected to prior acid adaptation such as backslopping.  相似文献   

20.
Hervé Robert 《LWT》2006,39(3):256-265
The acidification properties, metabolic activity and technological performance of four individual Lactobacillus plantarum or Leuconostoc freeze-dried starters were investigated during a complete wheat sourdough breadmaking process including 0.2 g/100 g baker's yeast. Microbiological contents (lactic acid bacteria and yeasts), acidification characteristics (pH and total titratable acidity), soluble carbohydrates (maltose, glucose and fructose) and fermentative end-products (lactic and acetic acids, ethanol) contents were evaluated during both sourdough and corresponding bread dough fermentation. Biochemical and technological analysis of the resulting bread products are also presented. Some differences among strains in acidification properties and soluble carbohydrates availability were outlined both in sourdough and bread dough. Each individual Leuconostoc or Lb. plantarum starter was able to produce a characteristic fermentation and was found to ensure the production of breads with overall satisfactory acceptance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号