首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neetoo H  Chen H 《Food microbiology》2011,28(1):119-127
Alfalfa sprouts are recurrently implicated in outbreaks of food-borne illnesses as a result of contamination with Salmonella or Escherichia coli O157:H7. In the majority of these outbreaks, the seeds themselves have been shown to be the most likely source of contamination. The aims of this study were to comparatively assess the efficacy of dry heat treatments alone or in conjunction with high hydrostatic pressure (HHP) to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Dry heat treatments at mild temperatures of 55 and 60 °C achieved ≤1.6 and 2.2 log CFU/g reduction in the population of Salmonella spp. after a 10-d treatment, respectively. However, subjecting alfalfa seeds to more aggressive temperatures of 65 °C for 10 days or 70 °C for 24 h eliminated a ∼5 log population of Salmonella and E. coli O157:H7. We subsequently showed that the sequential application of dry heating followed by HHP could substantially reduce the dry heating exposure time while achieving equivalent decontamination results. Dry heating at 55, 60, 65 and 70 °C for 96, 24, 12 and 6 h, respectively followed by a pressure treatment of 600 MPa for 2 min at 35 °C were able to eliminate a ∼5 log CFU/g initial population of both pathogens. Finally, we evaluated the impact of selected treatments on the seed germination percentages and yield ratios and showed that dry heating at 65 °C for 10 days did not bring about any considerable decrease in the germination percentage. However, the sprout yield of treated alfalfa seeds was reduced by 21%. Dry heating at 60 and 65 °C for 24 and 12 h respectively followed by the pressure treatment of 600 MPa for 2 min at 35 °C did not significantly (P > 0.05) affect the germination percentage of alfalfa seeds although a reduction in the sprouting yield was observed.  相似文献   

2.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

3.
Consumption of fecally contaminated green onions has been implicated in several major outbreaks of foodborne illness. The objectives of this study were to investigate the survival and growth of Salmonella and Escherichia coli O157:H7 in green onions during storage and to assess the application of high hydrostatic pressure (HHP) to decontaminate green onions from both pathogens. Bacterial strains resistant to nalidixic acid and streptomycin were used to inoculate green onions at low (∼1 log cfu/g) and high (∼2 log cfu/g) inoculum levels which were then kept at 4 or 22 °C for up to 14 days. Both pathogens grew to an average of 5-6 log cfu/g during storage at 22 °C and the bacterial populations were fairly stable during storage at 4 °C. High-pressure processing of inoculated green onions in the un-wetted, wetted (briefly dipped in water) or soaked (immersed in water for 30 min) conditions at 250-500 MPa for 2 min at 20 °C reduced the population of Salmonella and E. coli O157:H7 by 0.6 to >5 log cfu/g, depending on the pressure level and sample wetness state. The extent of pressure inactivation increased in the order of soaked > wetted > un-wetted state. The pressure sensitivity of the pathogens was also higher at elevated treatment temperatures. Overall, after pressure treatment at 400-450 MPa (soaked) or 450-500 MPa (wetted) for a retention time of 2 min at 20-40 °C, wild-type and antibiotic-resistant mutant strains of Salmonella and E. coli O157:H7 inoculated on green onions were undetectable immediately after treatment and throughout the 15-day storage at 4 °C. The pressure treatments also had minimal adverse impact on most sensorial characteristics as well as on the instrumental color of chopped green onions. This study highlights the promising applications of HHP to minimally process green onions in order to alleviate the risks of Salmonella and E. coli O157:H7 infections associated with the consumption of this commodity.  相似文献   

4.
This study compared lactic acid resistance of individual strains of wild-type and rifampicin-resistant non-O157 Shiga toxin-producing Escherichia coli (STEC) and of susceptible and multidrug-resistant (MDR) and/or MDR with acquired ampC gene (MDR-AmpC) Salmonella against E. coli O157:H7. After inoculation of sterile 10% beef homogenate, lactic acid was added to a target concentration of 5%. Before acid addition (control), after acid addition (within 2 s, i.e. time-0), and 2, 4, 6 and 8 min after addition of acid, aliquots were removed, neutralized, and analyzed for survivors. Of wild-type and of rifampicin-resistant non-O157 STEC strains, irrespective of serogroup, 85.7% (30 out of 35 strains) and 82.9% (29 out of 35 strains), respectively, reached the detection limit within 0–6 min. Of Salmonella strains, 87.9% (29 out of 33 isolates) reached the detection limit within 0–4 min, irrespective of antibiotic resistance phenotype. Analysis of non-log-linear microbial survivor curves indicated that non-O157 STEC serogroups and MDR and susceptible Salmonella strains required less time for 4D-reduction compared to E. coli O157:H7. Overall, for nearly all strains and time intervals, individual strains of wild-type and rifampicin-resistant non-O157 STEC and Salmonella were less (P < 0.05) acid tolerant than E. coli O157:H7.  相似文献   

5.
M.I. Bazhal  G.S.V. Raghavan 《LWT》2006,39(4):420-426
Inactivation of Escherichia coli O157:H7 in liquid whole egg using thermal and pulsed electric field (PEF) batch treatments, alone and in combination with each other, was investigated. Electric field intensities in the range from 9 to 15 kV/cm were used in the study. The threshold temperature for thermal inactivation alone was 50 °C. PEF enhanced the inactivation of E. coli O157:H7 when the sample temperature was higher than the thermal threshold temperature. The maximum inactivation of E. coli O157:H7 obtained using thermal treatment alone was ∼2 logs at 60 °C. However, combined heat and PEF treatments resulted in up to 4 log reduction of the pathogen. The kinetic rate constants kTE for combined treatments at 55 °C varied from 0.025 to 0.119 pulse−1 whereas the rate constants at 60 °C ranged from 0.034 to 0.228 pulse−1. These results indicated a synergy between temperature and electric field on the inactivation of E. coli O157:H7 within a given temperature range.  相似文献   

6.
This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤ 1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤ 4.5 and ≤ 3.9 log CFU/g. Log reductions of ≤ 4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.  相似文献   

7.
The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are “competitive with” or “antagonistic to” potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit.  相似文献   

8.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

9.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

10.
In the last two decades several foodborne disease outbreaks associated with produce were reported. Tomatoes, in particular, have been associated with several multi-state Salmonella outbreaks. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on whole Roma tomato surfaces by X-ray at 0.1, 0.5, 0.75, 1.0, and 1.5 kGy was studied. The main purpose of this study was to achieve a 5 log reduction in consistent with the recommendations of the National Advisory Committee on Microbiological Criteria for Foods. Moreover, the effect of X-ray on inherent microflora (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated Roma tomatoes, during storage at ambient temperature (22 °C) for 20 days was also determined. Mixtures of three or two strains of each tested organism was spot inoculated (100 μl) onto the surface of Roma tomatoes (approximately 7–9 log per tomato), separately, and air-dried, followed by treatment with X-ray doses at 22 °C and 55–60% relative humidity. Surviving bacterial populations on tomato surfaces were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Treatment with X-ray significantly reduced the population of the tested pathogens on whole Roma tomato surfaces, compared with the control. Approximately 4.2, 2.3, 3.7 and 3.6 log CFU reduction of E. coli O157:H7, L. monocytogenes, S. enterica and S. flexneri per tomato were achieved by treatment with 0.75 kGy X-ray, respectively. More than a 5 log CFU reduction per tomato was achieved at 1.0 or 1.5 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the inherent microflora on Roma tomatoes. Inherent levels were significantly (p < 0.05) lower than the control sample throughout storage for 20 days.  相似文献   

11.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

12.
A pilot survey for the pathogens Salmonella and Escherichia coli O157:H7, and E. coli biotype 1 was conducted on 100 New Zealand-produced (domestic) pig carcasses and 110 imported pig meat samples over an 8-month period to assess the likelihood of introduction of novel pathogen strains into New Zealand (NZ), and as a guide for development of a domestic pork National Microbiological Database programme. Salmonella was not isolated from domestic pig carcasses or from pig meat imported from Canada and the USA. The prevalence of Salmonella in imported pig meat was 3.6% (95% CI 1.0–9.0) with positive samples detected from Australian pig meat. The prevalence of E. coli O157:H7 on domestic pig carcasses was 1% (95% CI 0.03–5.4) while the overall prevalence of E. coli O157:H7 in imported pig meat was 1.8% (95% CI 0.2–6.4), detected mainly from Australian but not from Canadian or US pork. All except three samples have an E. coli biotype 1 count of <100 CFU cm−2 or g−1, indicating good hygiene quality of domestic and imported pig meat. The results demonstrated that importation of uncooked pig meat is a potential route for the introduction of new clones of Salmonella and E. coli O157:H7 into New Zealand.  相似文献   

13.
The objective of this research was to determine the effectiveness of caffeine on inactivation of Escherichia coli O157:H7 in brain heart infusion (BHI) broth. Overnight samples of five E. coli O157:H7 strains of (E0019, F4546, H1730, 944 and Cider) were used in this study. These strains were individually inoculated at an initial inoculum level of 2 log CFU/ml into BHI broth containing caffeine at different concentrations (0.00%, 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.50%, 1.75%, and 2.00%). Samples were then incubated at 37 °C for 24 h. Bacterial growth was monitored at different time intervals by measuring turbidity at 610 nm using a spectrophotometer. Results revealed that the addition of caffeine inhibited the growth of E. coli O157:H7. Significant growth inhibition was observed with concentration levels of 0.50% and higher. These results indicate that caffeine has potential as an antimicrobial agent for the treatment of E. coli O157:H7 infection and should be investigated further as a food additive to increase biosafety of consumable food products.  相似文献   

14.
Fresh produce can be a vehicle for the transmission of pathogens capable of causing human illnesses and some of them can grow on fresh-cut vegetables. The survival and growth of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes inoculated onto shredded lettuce was determined under modified atmosphere packaging conditions, at various storage temperatures. We also monitored changes in pH and gas atmospheres within the packages and the growth of psychrotrophic and mesophilic microorganisms. After pathogen inoculation, shredded lettuce was packaged in films of different permeability and stored at 5 and 25 °C. After 10 days at 5 °C populations of E. coli O157:H7 and Salmonella decreased approximately 1.00 log unit while L. monocytogenes increased about 1.00 log unit, in all package films. Moreover, the pathogens level increased between 2.44 and 4.19 log units after 3 days at 25 °C. Psychrotrophic and mesophilic bacteria had similar growth at both temperatures with higher populations in air than in the other atmospheres. The composition of the storage atmosphere within the packaging of lettuce had no significant effect on the survival and growth of the pathogens used in this study at refrigeration temperatures. The results obtained can be considered as a warning indicator, which reinforces the necessity for corrective measures to avoid contamination of vegetables.  相似文献   

15.
This study investigated the effects of packaging and storage temperature on the spinach phylloepiphytic bacterial community and fate of Escherichia coli O157:H7. Freshly harvested spinach was rinsed and/or disinfected, packaged and stored under typical retail conditions (4 °C) or under temperature abuse conditions (10 °C) for a period of 15 days. The final population size of culturable epiphytic bacteria after 15 days of storage was not affected by the temperature of storage or the presence of E. coli O157:H7. However, analysis of the bacterial community using denaturing gradient gel electrophoresis of 16s rDNA revealed changes with time of storage and the presence of E. coli O157:H7. Excision and sequencing of prominent DGGE bands identified that the majority of sequences belonged to the phyla Actinobacteria, Bacteroidetes, Firmicutes and Alphaprotebacteria. After 10 days of storage at 4 °C or 10 °C the population became more dominated by psychrotrophic bacteria. Removal of the epiphytic bacteria resulted in significant increases in numbers of E coli O157:H7 at 10 °C and was associated with decreased expression of E. coli O157:H7 virulence (stxA, curli, eaeA) and stress response (rpoS, sodB) genes. In conclusion, storage temperature and time of storage of packaged spinach affected the diversity of the epiphytic spinach microbiota which influenced the growth, establishment, physiology and potentially virulence of E. coli O157:H7.  相似文献   

16.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

17.
Cells in log phase cultures of Escherichia coli ATCC 23739 and E. coli O157:H7 02:0627 incubated at 6 °C for 8 days grew by elongation and the formation of filaments. When suspensions of cells from the cultures were incubated at 37 °C for 4 h, there was little or no change in mean cell lengths during the first hour of incubation; but subsequently the fractions of elongated (>4 ≤ 10 μm) or filamentous (>10 μm) cells declined with the most cells being of normal size (≤4 μm) after 3 h. LIVE/DEAD BacLight staining indicated that ≥94% of cells were alive after all times at 37 °C. Direct observation of cells on slides incubated at 37 °C, from culture incubated at 6 °C for 5 days, showed that few or no cells of normal size divided. Elongated cells of both strains, and filamentous cells of E. coli ATCC 23739 divided to multiple daughter cells; but filamentous cells of E. coli O157:H7 lysed. The results indicate that abrupt shifts of log phase E. coli from refrigeration to warm temperatures lead to inactivation of some cells and division of others to multiple daughter cells, and suggest that the extents of these opposing responses may vary widely among strains.  相似文献   

18.
Escherichia coli O157:H7 (EC O157:H7), as well as its recently emerging non-O157 relatives, are a notorious group of pathogenic bacteria associated with foodborne outbreaks. In this study, we demonstrated that secondary electrospray ionization mass spectrometry (SESI-MS) could be a rapid and accurate detection technology for foodborne pathogens. With SESI-MS volatile organic compound (VOC) profiling, we were able to detect and separate a group of eleven E. coli strains from two major foodborne bacteria, Staphylococcus aureus and Salmonella Typhimurium in three food modeling media. In addition, heatmap analysis of relative peak intensity show that there are six core peaks (m/z of 65, 91, 92, 117, 118 and 119) present and at a similar intensity in all eleven E. coli strains at the experimental conditions we tested. These peaks can be considered conserved VOC biomarkers for E. coli species (robustly produced after just 4 h of growth). Bacterial strain-level differentiation was also attempted via VOC profiling, and we found that EC O157:H7 and EC O145 were differentiable from all other EC strains under the conditions investigated.  相似文献   

19.
This study investigated the growth and survival of Escherichia coli O157:H7 inoculated into boerewors models with (B + P) and without (B − P) sulphur dioxide preservative at a low (L) and high (H) inoculum followed by storage at 0, 4 and 10 °C for 10 days. The pathogen’s thermal inactivation at 50, 60, 65 and 70 °C was also evaluated in B + P. The B − P at both low and high inocula had significantly higher recoveries at all temperatures compared to B + P. The BL + P and BH + P had significant reductions in recoveries at 0 °C, declining to below detectable limits at days 8 and 10, respectively. At 4 °C, the BL + P and BH + P recoveries declined significantly at day 10. At 10 °C, significant increases were observed from days 0 to day 10 in both models and at low and high inocula. At 0 °C, the BL − P and BH − P treatments had significant declines in recoveries. The combination of sulphur dioxide preservative and low temperature demonstrated the best efficacy against E. coli O157:H7 survival. Thermal inactivation of E. coli O157:H7 was 60 min at 60 °C, 80 s at 65 °C and 60 s at 70 °C. This study demonstrated that E. coli O157:H7 can survive in boerewors with and without preservative and is more sensitive to heat treatment at 70 °C.  相似文献   

20.
Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7 °C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7 °C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号