共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
由于催化剂的存在,Brusselator振子是典型的多尺度耦合系统,即常常存在激发态和沉寂态耦合的簇发振动行为。考虑分数阶Brusselator系统的催化过程受到外部周期扰动下的情形,这使系统的非线性行为更加复杂。根据分数阶系统稳定性理论进行了双参数分岔分析,讨论了Hopf分岔的充分条件。发现系统存在一条奇线,利用中心流形定理和数值模拟验证了该奇线的稳定性。探讨了分数阶阶次对簇发振动的影响,通过分数阶阶次与慢变参数的双参数分岔图,发现分数阶阶次与激发态时间长短密切相关,即降低分数阶阶次,可以缩短激发态时间,从而增加沉寂态的时间。研究还发现扰动幅值的变化直接影响快子系统的吸引子类型,当激励幅值较大时,快子系统涉及到两种吸引子,沉寂态和激发态并存;当激励幅值较小时,快子系统涉及一种吸引子,沉寂态基本消失。 相似文献
8.
针对具有非线性和黏弹性的隔振系统采用分数阶非线性Zener模型对其本构关系进行表征。将分数阶项等效成三角函数的形式,采用高阶谐波平衡法求解系统的稳态响应并结合多种方法对结果进行比较,数值模拟系统在低频区的动力学响应,采用Floquet理论对系统分岔类型进行判定,揭示了分数阶项对系统动力学响应的影响。研究结果表明,高次超谐波不仅存在跳跃现象且相邻次数超谐波转迁过程中存在周期运动多样性。数值模拟过程中还发现系统存在周期运动和混沌共存的现象,并总结了多态共存区域及其相邻区域的运动规律。 相似文献
9.
强Duffing系统的周期共振解及其转迁集 总被引:2,自引:0,他引:2
通过非线性时间变换,利用系统的功能关系,结合小参数法,求出了强非线性振动系统主共振解和1/3亚谐解。利用转迁特性求得Dufing方程从主共振到1/3亚谐共振解分叉转迁集的解析表达式,与IHB(IncrementalHarmonicBalance)方法的结果比较表明,两者吻合良好 相似文献
10.
为了把非线性动力学理论应用于超灵敏质量传感技术,应用积分方程法研究了由两个弹性耦合的纳米尺度Duffing振子构成的非线性受迫振动系统的动力学特性。该方法首先求得控制方程的线性部分对应的级数形式的格林函数,然后把控制方程转化为积分方程,再把积分方程化为代数方程组,最后数值求解该方程组,得到问题的近似解。由数值实验发现,当系统的参数取一组特定数值时,此系统可发生模态局部化现象。而当系统的参数取另一组特定数值时,一个振子的质量的微小变化可引起另一个振子的周期响应发生剧烈变化。 相似文献
11.
一种非线性汽车悬架的亚谐共振及奇异性 总被引:3,自引:0,他引:3
研究了具有非线性刚度和非线性阻尼的单自由度汽车悬架在简谐路面激励作用下的亚谐共振。非线性刚度采用立方非线性模型,非线性阻尼采用改进Bingham模型。利用平均法得到了系统的幅频响应方程,并用奇异性理论对分岔方程进行了分析,得到了转迁集和分岔图。结果表明,系统分岔方程是超出十一种基本分岔之外的一种三参数普适开折。另外,还详细分析了系统参数对开折参数和分岔参数的影响,得到了一些有益的结论,可为悬架设计中系统参数的合理选择提供理论指导。 相似文献
12.
13.
研究了含有分数阶微分项的单自由度间隙振子的受迫振动,利用KBM渐近法获得了系统的近似解析解。分析了分段线性系统的主共振,得到了分数阶阶次在0~2时分数阶项的统一表达式;发现分数阶微分项在分段系统中以等效线性阻尼和等效线性刚度的形式影响着系统的动力学特性,而间隙以等效非线性刚度的形式影响着系统的动力学特性。获得了主共振幅频响应的表达式,并得到了系统的稳定性条件;比较了系统主共振幅频响应的近似解析解和数值解,发现两者符合程度较高,验证了近似解析解的正确性;详细分析了分数阶项和间隙对系统主共振幅频响应的影响。研究表明KBM渐近法是分析分数阶分段光滑系统动力学的有效方法。 相似文献
14.
The Duffing oscillator under combined periodic and random excitations is investigated by a simple technique. The system response is separated into the deterministic and random parts governed by two coupled differential equations. The couple relation is expressed through varying on time coefficients which are approximately replaced by their averaging values over one period. This simplification yields that the two coupled differential equations can be solved by averaging and equivalent linearization methods. The mean-square response of the system is compared with the numerical results obtained by the finite element and Monte Carlo simulation methods. The results obtained show the interaction between the periodic and random excitations on the system response. 相似文献
15.
A numerical path integral approach is developed for determining the response and first-passage probability density functions (PDFs) of the softening Duffing oscillator under random excitation. Specifically, introducing a special form for the conditional response PDF and relying on a discrete version of the Chapman–Kolmogorov (C–K) equation, a rigorous study of the response amplitude process behavior is achieved. This is an approach which is novel compared to previous heuristic ones which assume response stationarity, and thus, neglect important aspects of the analysis such as the possible unbounded response behavior when the restoring force acquires negative values. Note that the softening Duffing oscillator with nonlinear damping has been widely used to model the nonlinear ship roll motion in beam seas. In this regard, the developed approach is applied for determining the capsizing probability of a ship model subject to non-white wave excitations. Comparisons with pertinent Monte Carlo simulation data demonstrate the reliability of the approach. 相似文献
16.
Lincong ChenWeiqiu Zhu 《Probabilistic Engineering Mechanics》2011,26(2):208-214
The first passage failure of single-degree-of-freedom (SDOF) nonlinear oscillator with lightly fractional derivative damping under real noise excitations is investigated in this paper. First, the system state is approximately represented by one-dimensional time-homogeneous diffusive Markov process of amplitude through stochastic averaging. Then, the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the conditional mean of first passage time are established from the averaged Itô equation for Hamiltonian. The conditional reliability function, the conditional probability density and mean of the first passage time are obtained by solving these equations together with suitable initial condition and boundary conditions. Finally, two examples are worked out in detail and the analytical solutions are checked by those from the Monte Carlo simulation of original systems. 相似文献
17.
18.
19.
HU Niao-qing WEN Xi-sen CHEN MinCollege of Mechatronic Engineering Automation National University of Defense Technology Changsha P. R. China 《国际设备工程与管理》2002,7(2)
In this paper, the well-known Duffing equation and the nonlinear equation de-scribing vibration of the human eardrum are introduced from elastic nonlinear system theory. According to the fact that the human ear can distinguish weak sound with small difference , the idea that the Duffing oscillator can be used to detect a weak signal and diagnose early fault of machinery is proposed. In order to obtain a model for weak signal detection via the Duffing oscillator, the first step is to week all forms of solutions of the Duffing equation. The second step is to study global bi furcations of the Duffing equation using qualitative analysis theory of a dynamic system. That is to say, a series of bi furcations thresholds of the Duffing equation can be analyzed by the Melnikov function and a subharmonics Melnikov function. Then the three types of bifurcations thresholds varying with damping and external exciting amplitude are discussed. The analysis concludes that the bi furcation threshold corresponding to the ma 相似文献