首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lethality of ultrapasteurization treatments (70 °C/1.5 min.) applied at constant temperature (isothermal condition) and at a constantly raising temperature of 2 °C/min (non-isothermal condition) in liquid whole egg (LWE) against two strains of Listeria monocytogenes (STCC 5672 and 4032) and one of Listeria innocua has been investigated. Isothermal survival curves up to 71 °C were obtained, which followed first-order inactivation kinetics. The obtained Dt values indicated that L. innocua was significantly (p < 0.05) more heat resistant than L. monocytogenes strains. Non-significant (p > 0.05) differences were observed among z values (12.4 ± 0.4 °C, 13.1 ± 0.4 °C and 12.2 ± 0.7 °C for L. innocua and L. monocytogenes 5672 and 4032, respectively). Based on obtained Dt and z values, isothermal ultrapasteurization treatment (70 °C/1.5 min.) would provide 3.5-, 5.0-, and 6.5-Log10 cycles of L. innocua and L. monocytogenes 5672 and 4032, respectively. Non-isothermal heating lag phase increased the thermotolerance of Listeria species in LWE. The simulated industrial pasteurization treatment for LWE (heating-up phase from 25 to 70 °C followed by 1.5 min. at 70 °C) would attain 5-Log10 reductions of L. monocytogenes 5672 and 4032, and 3.7-Log10 reductions of L. innocua. Therefore, the safety level of industrial ultrapasteurization concerning L. monocytogenes could be lower than that estimated with data obtained under isothermal conditions.  相似文献   

2.
The behaviour of Listeria monocytogenes and Staphylococcus aureus in vacuum-packed cooked ham slices treated with an electron beam and stored at 4, 7 and 10 °C was investigated. Cooked ham slices were inoculated with L. monocytogenes and S. aureus and electron beam treated at 2 and 3 kGy. After treatment, a long temperature-dependent death phase was observed, followed by growth at a slower rate than in untreated samples. Assuming a hypothetical load of 10 cells/g or cm2 of L. monocytogenes and S. aureus as an original contamination in an industrial situation, an E-beam treatment of vacuum-packed cooked ham slices at 2 kGy guarantees the microbiological safety of the product along its shelf life, even if a noticeable temperature (10 °C) abuse occur during its storage period. Likewise, the E-beam treatment gave rise to a substantial increase of the RTE cooked ham shelf life off-sensory features associated to the spoilage only were detected in non-treated samples (controls) after 8 and 18 days of storage at 10 °C and 7 °C, respectively.  相似文献   

3.
Essential oils extracted by hydrodistillation from Cuminum cyminum and Rosmarinus officinalis were characterized by means of GC and GC–MS. C. cyminum and R. officinalis contained α-pinene (29.1%, 14.9%), 1,8-cineole (17.9%, 7.43%) and linalool (10.4%, 14.9%), respectively, as the major compounds. C. cyminum oil exhibited stronger antimicrobial activity than did R. officinalis oil against E. coli, S. aureus and L. monocytogenes. Complete death time on exposure to Cuminum cyminum L. and Rosmarinus officinalis L. oils were 20 and 25 min 180 and 240 min and 90 and 120 min for E. coli, S. aureus and L. monocytogenes, respectively. Radical-scavenging and antioxidant properties were tested by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and the β-carotene bleaching test. These properties were compared to those of Thymus x-porlock essential oil, used as a reference ingredient. The radical scavenging performance of the rosemary oil was better than that of C. cyminum. Results from the antioxidant test were better than those provided by the radical-scavenging activity. C. cyminum and R. officinalis essential oils may be considered as potent agents in food preservation.  相似文献   

4.
The effect of pulsed electric fields (PEF) on the reduction of the population and on the occurrence of sublethal injury in five strains of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella Typhimurium) microorganisms was investigated in media of pH 4.0 and 7.0. Samples were subjected to 50 exponential waveform pulses of 15, 20, 25 and 30 kV/cm at a repetition rate of 1 Hz.PEF resistance and occurrence of sublethal injury depended on the electric field strength and pH of the treatment medium and varied widely among the 20 strains investigated. In general, the increment of the electric field strength from 20 to 30 kV/cm had a significant effect on the viability loss of all the strains. However this increment hardly affected the viability of E. coli W3110 and O157:H7 in the medium of pH 4.0 and of L. monocytogenes 4031, 5672 and 4032 in the medium of pH 7.0. At 30 kV/cm a population reduction higher than 4-Log10 cycles was observed in two strains of S. Typhimurium (878, 4594) and in three strains of S. aureus (976, 4465, 4466) in the medium of pH 4.0. In the medium of pH 7.0, this level of reduction was observed in two strains of E. coli (471, BJ4L1), in three strains of S. Typhimurium (443, 880, 722) and in three strains of S. aureus (976, 4465, 4466).In general, important sublethal injury was not observed for the strains of the two-Gram positive microorganisms in the media of pH 4.0 and 7.0 and for the strains of S. Typhimurium treated in the media of pH 7.0. For E. coli sublethal injury was detected for all the strains investigated, except the strain BJ4L1 treated at 30 kV/cm in the medium of pH 7.0.Industrial relevance. The identification of the most PEF resistant microorganisms of public health concern is necessary to establish the treatment conditions for PEF pasteurization. Data obtained in this investigation demonstrates that the PEF resistance and the occurrence of sublethal injury may vary greatly among different strains of a bacteria and both depend on the pH of the treatment medium. Therefore the most resistant microorganisms of public health significance can be expected to vary for different foods depending of their pH.  相似文献   

5.
The aim of this study was to survey the presence of Staphylococcus aureus and Listeria monocytogenes during the cheese making process in small-scale raw milk cheese production in Norway.The prevalence of S. aureus in bovine and caprine raw milk samples was 47.3% and 98.8%, respectively. An increase in contamination during the first 2-3 h resulted in a 73.6% prevalence of contamination in the bovine curd, and 23 out of 38 S. aureus-negative bovine milk samples gave rise to S. aureus-positive curds. The highest contamination levels of S. aureus were reached in both caprine and bovine cheese after 5-6 h (after the first pressing). There was no contamination of L. monocytogenes in caprine cheeses and only one (1.4%) contaminated bovine cheese.This work has increased our knowledge about S. aureus and L. monocytogenes contamination during the process of raw milk cheese production and gives an account of the hygiene status during the manufacture of Norwegian raw milk cheeses.  相似文献   

6.
The objective was to evaluate and compare the pulsed electric field (PEF) resistance of four Gram-positive (Bacillus subtilis, Listeria monocytogenes, Lactobacillus plantarum, Staphylococcus aureus) and four Gram-negative (Escherichia coli, E. coli O157:H7, Salmonella serotype Senftenberg 775W, Yersinia enterocolitica) bacterial strains under the same treatment conditions. Microbial characteristics such as cell size, shape or type of the cell envelopes did not exert the expected influence on microbial PEF resistance. The most PEF resistant bacteria depended on the treatment medium pH. For instance, L. monocytogenes, which showed the highest PEF resistance at pH 7.0, was one of the most sensitive at pH 4.0. The most PEF resistant strains at pH 4.0 were the Gram-negatives E. coli O157:H7 and S. Senftenberg. A subsequent holding of PEF-treated cells in pH 4.0 for 2 h increased the degree of inactivation up to 4 extra Log10 cycles depending on the bacterial strain investigated. Under these treatment conditions, the most PEF resistant bacterial strains were still the pathogens S. Senftenberg and E. coli O157:H7.

Industrial relevance

The design of appropriate food preservation processes by PEF requires the selection of an adequate target bacterial strain, which should correspond to the most PEF resistant microorganism contaminating food. This study indicates that the pH of the treatment medium plays an important role in determining this target bacterial strain. On the other hand, the combination of PEF and subsequent holding under acidic conditions has been proven to be an effective method in order to achieve a higher level of microbial inactivation.  相似文献   

7.
We hypothesized that genomic regions specific to Listeria monocytogenes or selected L. monocytogenes strains may contribute to virulence and phenotypic differences among the strains. A whole genome alignment of two completed L. monocytogenes genomes and the one completed Listeria innocua genome initially identified 28 genomic regions of difference (RD) > 4 kb that were found in one or both L. monocytogenes genomes, but absent from the non-pathogenic L. innocua. In silico analyses using an additional 18 draft L. monocytogenes genomes showed that (i) 15 RDs were found in all or most L. monocytogenes genomes; (ii) three RDs were found in all or most lineage I genomes, but absent from lineage II genomes; and (iii) four RDs were found in all lineage II genomes, but no lineage I genomes. Null mutants in two L. monocytogenes-specific RDs (RD16 and RD30; found in most L. monocytogenes) and the lineage II-specific RD25 showed no evidence for impaired invasion or intracellular growth in selected tissue culture cells. Although, in pH 5.5 minimal media, the ΔRD30 null mutant showed reduced ability to compete with its parent strain, indicating that RD30 may have a role in L. monocytogenes growth under limited nutrient conditions at acidic pH.  相似文献   

8.
The sour orange (Citrus aurantium) juice is commonly used as flavoring and acidifying agent for vegetable salads and appetizers in Turkey. It was aimed to determine the survival and growth pattern of Salmonella Typhimurium and Listeria monocytogenes in sour orange juice. Different concentrations of neutralized and un-neutralized juice samples were inoculated with each of the test microorganisms (∼6 log CFU/mL) separately and then incubated at 4 °C and 37 °C for seven days. It was detected both of the test microorganisms could survive and even grow in neutralized juice samples at 37 °C for two days. However, none of them could survive at the end of seventh day of incubation at 37 °C. Low incubation temperature (+4 °C) increased the survival of the tested microorganisms. Also, it was detected that L. monocytogenes were less resistant to the variable conditions than S. Typhimurium. It was concluded that the antimicrobial effect of sour orange juice mainly depends on the low pH value of the product. However, incubation time and temperature are also effective on the survival of the tested pathogens.  相似文献   

9.
The response of Staphylococcus aureus growth inhibition by Lactococcus garvieae to catalase and milk lactoperoxidase, and its efficiency in raw milk cheese were evaluated. S. aureus and L. garvieae were co-cultivated in broth buffered at pH 6.8, and in raw, pasteurized and microfiltered milk, in presence and absence of catalase. Although H2O2 production by L. garvieae was detected only in agitated broth, the inhibition of S. aureus by L. garvieae was reduced by catalase both in static and shaking cultures by 2.7 log, pasteurized milk (∼0.7 log), microfiltered milk (∼0.6 log) and raw milk (∼0.2 log). The growth of S. aureus alone in microfiltered milk was delayed compared with that in pasteurized milk and inhibition of S. aureus by L. garvieae was stronger in microfiltered milk. The inhibition of coagulase-positive staphylococci (CPS) by L. garvieae in raw milk cheese was similar to that in raw milk (∼0.8 log), but weaker than that in pasteurized and microfiltered milks. L. garvieae also had an early antagonistic effect on the growth of several other microbial groups, which lastingly affected populations levels and balance during cheese ripening.  相似文献   

10.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

11.
The purposes of this study were to determine the inactivation effects of intense pulsed light (IPL) on Listeria monocytogenes and the commercial feasibility of this sterilization method. The inactivation of L. monocytogenes at cultivated plates increased with increasing electric power and treatment time. Approximately 4–5 log reduction of the cell was achieved with IPL treatment for 5000, 600, 300, and 100 μs at 10, 15, 20, and 25 kV of voltage pulse, respectively. In the early stages of IPL treatments at 10, 15, and 20 kV, little inactivation was observed with a critical treatment time (tc) of 360.6, 95.5, and 32.2 μs, respectively, while an abrupt inactivation without a critical treatment time was observed at 25 kV. The sterilization effects on commercial infant foods inoculated with L. monocytogenes were investigated at 15 kV, which showed higher energy efficiency for the inactivation of L. monocytogenes.  相似文献   

12.
This investigation evaluated the lethal efficiency of pulsed electric fields (PEFs) to pasteurize liquid whole egg (LWE). To achieve this aim, we describe the inactivation of Salmonella Enteritidis and the heat resistant Salmonella Senftenberg 775 W in terms of treatment time and specific energy at electric field strengths ranging from 20 to 45 kV/cm. Based on our results, the target microorganism for this technology in LWE varied with intensity of the PEF treatment. For electric field strengths greater than 25 kV/cm, Salmonella Enteritidis was the most PEF-resistant strain. For this Salmonella serovar the level of inactivation depended only on the specific energy applied: i.e., 106, 272, and 472 kJ/kg for 1, 2, and 3 Log10 reductions, respectively. The developed mathematical equations based on the Weibull distribution permit estimations of maximum inactivation level of 1.9 Log10 cycles of the target Salmonella serovar in the best-case scenario: 250 kJ/kg and 25 kV/cm. This level of inactivation indicates that PEF technology by itself cannot guarantee the security of LWE based on USDA and European regulations. The occurrence of cell damage due to PEF in the Salmonella population opens the possibility of designing combined processes enabling increased microbial lethality in LWE.  相似文献   

13.
Potential effects of the fat content of frankfurters on the gastrointestinal survival of Listeria monocytogenes were investigated. At various stages of storage (7 °C, up to 55 days), inoculated frankfurters of low (4.5%) and high (32.5%) fat content were exposed to a dynamic gastrointestinal model (37 °C) and L. monocytogenes counts were determined at intervals during exposure in each gastrointestinal compartment (gastric, GC; intestinal, IC). Bacterial survival curves in each compartment were fitted with the Baranyi and Roberts mathematical model. L. monocytogenes populations on low- and high-fat frankfurters exceeded 8.0 log CFU/g at 39 and 55 days of storage, respectively. Major declines in populations occurred after 60 min on low-fat frankfurters in the GC, with reductions of 2.6 to >7.2 log CFU/g at 120 min on days 1 and 39 of storage, respectively. L. monocytogenes reductions in high-fat frankfurters ranged from 1.6 (day-1) to 5.2 (day-55) log CFU/g. Gastric inactivation rates were 0.080–0.194 and 0.030–0.097 log CFU/g/min for low- and high-fat samples, respectively. Since gastric emptying began while the gastric pH was >5, initial counts (enumerated 30 min after ingestion) reaching the IC depended on initial contamination levels on each product, which increased during storage. Subsequent reductions during the intestinal challenge were 0.1–1.4 log CFU/g. Findings indicated protective effects of fat against gastric destruction of L. monocytogenes. However, since the effects of fat were observed mainly at later stages of gastric exposure, they did not influence numbers of viable cells reaching the IC.  相似文献   

14.
A Lactococcus lactis subsp. lactis strain (L. lactis 69) capable to produce a heat-stable bacteriocin was isolated from charqui, a Brazilian fermented, salted and sun-dried meat product. The bacteriocin inhibited, in vitro, Listeria monocytogenes, Staphylococcus aureus, several lactic acid bacteria isolated from foods and spoilage halotolerant bacteria isolated from charqui. The activity of the bacteriocin was not affected by pH (2.0–10.0), heating (100 °C), and chemical agents (1% w/v). Treatment of growing cells of L. monocytogenes ScottA with the cell-free supernatant of L. lactis 69 resulted in complete cell inactivation. L. lactis 69 harbored the gene for the production of a nisin-like bacteriocin, and the amino acid sequence of the active peptide was identical to sequences previously described for nisin Z. However, differences were observed regarding the leader peptide. Besides, the isolate was able to survive and produce bacteriocins in culture medium with NaCl content up to 20%, evidencing a potential application as an additional hurdle in the preservation of charqui.  相似文献   

15.
The influence of non-lethal temperature on the survival of two species of food-borne bacteria under growth-preventing pH and water activity conditions was investigated. Specifically, inactivation rates of four strains of Escherichia coli and three strains of Listeria monocytogenes were determined in culture broth adjusted to pH 3.5 and water activity 0.90, to prevent growth of both species, and for temperatures in the range 5–45 °C at 5 °C intervals. Sixty-three inactivation rates were obtained, plotted on Arrhenius co-ordinates, and lines of best-fit determined by simple linear regression. Differences in the mean inactivation rate of each species at a given temperature were not significant (p < 0.05) with the exception of the rates at 25 °C. The inactivation rate responses of both species were comparable to those reported by McQuestin et al. (Appl. Environ. Microbiol., 75:6963–6972, 2009) for a variety of E. coli strains under a wide range of growth-preventing pH and water activity conditions. The results support the hypothesis that non-lethal temperature is a key factor governing the rate of inactivation of vegetative bacteria in foods when other hurdles prevent their growth and indicate that the temperature effect may also be independent of bacterial species.  相似文献   

16.
The purpose of this study was to assess the influence of the association of Listeria and Salmonella with shrimp surfaces on the effects of temperature, chlorine and acids on their survival. Planktonic, attached and colonized cells of Listeria monocytogenes Scott A, L. monocytogenes V7, Salmonella Senftenberg 1734b and S. Typhimurium ATCC 14028 were challenged with high (50°, 60° and 70 °C) and low (4 °C) temperature, 100 ppm sodium hypochlorite solution, and acetic, hydrochloric and lactic acids (pH 4.0). Attached and colonized Listeria and Salmonella showed significantly greater (p < 0.05) resistance to heat (∼1.3–2.6 fold increase in D-values), hypochlorite (∼6.6 ≥ 40.0 fold) and acids (∼4.0–9.0 fold) than their planktonic counterparts. There were no significant differences (p > 0.05) in the survival of planktonic, attached or colonized cells of Listeria and Salmonella stored under refrigerated conditions. The association of Listeria and Salmonella with shrimp surfaces enhances their resistance to heat, chlorine and acids. Both attachment to, and subsequent colonization of, shrimp surfaces by pathogens may reduce the efficacy of methods used in their control. Strategies to reduce attachment of these pathogens to shrimp are required to assure safety of this product.  相似文献   

17.
From 2359 specialty meats (continental sausages, cured/fermented, dried meats) sampled from markets and specialty food shops, 98.9% of samples were of satisfactory or acceptable microbiological quality. However, 16 (0.7%) were unsatisfactory as a result of Escherichia coli, Staphylococcus aureus or Listeria spp. contamination (≥102 CFU/g), and nine (0.4%) were unacceptable due to presence of Salmonella spp. or Listeria monocytogenes (>102 CFU/g). Meats with unacceptable levels of L. monocytogenes were within shelf life (range: 8–143 days remaining). Nine different subtypes of L. monocytogenes were detected with sero/AFLP type 1/2c VII predominating (37%), although this subtype was not overrepresented in any particular meat type (P > 0.05). Ninety-six percent of continental sausages and cured/fermented products were stored at <8 °C at premises, including seven of the nine unacceptable samples. These nine meats were all pre-packed prior to supply to retail premises (OR = 0.1 P = 0.003) indicating that contamination with bacterial pathogens occurred earlier in the production chain. Most samples (72.7%, 8/11) with unsatisfactory levels of E. coli were sliced on request, suggesting cross-contamination at point of sale. This study highlights the importance of ensuring that products do not become contaminated before final packaging, that storage conditions are controlled, and that durability dates are an accurate indication of the shelf life of the product so as to minimise the potential for L. monocytogenes to be present at levels hazardous to health at the point of sale.  相似文献   

18.
H. Ölmez  S.D. Temur 《LWT》2010,43(6):964-970
The effects of ozone (2 mg/L), chlorine (100 mg/L) and organic acid (0.25 g/100 g citric acid plus 0.50 g/100 g ascorbic acid) treatments at 10 °C for 2 min on the removal of Escherichia coli and Listeria monocytogenes cells embedded inside biofilms on the surface of lettuce leaves were studied. None of the sanitizing treatments were found effective in removing the bacterial biofilms. Initiation of biofilms was observed after 24 h of incubation. Bacterial cells appeared as individual cells, rather than clusters after 6 h incubation, thus 99.9% reductions in both E. coli and L. monocytogenes counts were achieved with all the three treatments. However, after 48 h incubation, none of the treatments resulted in higher than 90% reduction in microbial counts. Biofilm formation was demonstrated for the 48 h incubated samples with SEM images.  相似文献   

19.
Several recent foodborne disease outbreaks associated with leafy green vegetables, including spinach, have been reported. X-ray is a non-thermal technology that has shown promise for reducing pathogenic and spoilage bacteria on spinach leaves. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves using X-ray at different doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) was studied. The effect of X-ray on color quality and microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated spinach was also determined. A mixture of three strains of each tested organism was spot inoculated (100 μl) onto the surface of spinach leaves (approximately 8–9 log ml−1), separately, and air-dried, followed by treatment with X-ray at 22 °C and 55–60% relative humidity. Surviving bacterial populations on spinach leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction/leaf was achieved with 2.0 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on spinach leaves and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. Treatment with X-ray did not significantly affect the color of spinach leaves, even when the maximum dose (2.0 kGy) was used.  相似文献   

20.
The main objective of this study was to investigate the growth kinetics of Listeria monocytogenes and background microorganisms in fresh-cut cantaloupe. Fresh-cut cantaloupe samples, inoculated with three main serotypes (1/2a, 1/2b, and 4b) of L. monocytogenes, were incubated at different temperatures, ranging from 4 to 43 °C, to develop kinetic growth models. During storage studies, the population of both background microorganisms and L. monocytogenes began to increase almost immediately, with little or no lag phase for most growth curves. All growth curves, except for two growth curves of L. monocytogenes 1/2a at 4 °C, developed to full curves (containing exponential and stationary phases), and can be described by a 3-parameter logistic model. There was no significant difference (P = 0.28) in the growth behaviors and the specific growth rates of three different serotypes of L. monocytogenes inoculated to fresh-cut cantaloupe. The effect of temperature on the growth of L. monocytogenes and spoilage microorganisms was evaluated using three secondary models. For L. monocytogenes, the minimum and maximum growth temperatures were estimated by both the Ratkowsky square-root and Cardinal parameter models, and the optimum temperature and the optimum specific growth rate by the Cardinal parameter model. An Arrhenius-type model provided more accurate estimation of the specific growth rate of L. monocytogenes at temperatures <4 °C. The kinetic models developed in this study can be used by regulatory agencies and food processors for conducting risk assessment of L. monocytogenes in fresh-cut cantaloupe, and for estimating the shelf-life of fresh-cut products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号