首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider the problem of constructing reduced‐order models of a class of time‐dependent randomly parametrized linear partial differential equations. Our objective is to efficiently construct a reduced basis approximation of the solution as a function of the spatial coordinates, parameter space, and time. The proposed approach involves decomposing the solution in terms of undetermined spatial and parametrized temporal basis functions. The unknown basis functions in the decomposition are estimated using an alternating iterative Galerkin projection scheme. Numerical studies on the time‐dependent randomly parametrized diffusion equation are presented to demonstrate that the proposed approach provides good accuracy at significantly lower computational cost compared with polynomial chaos‐based Galerkin projection schemes. Comparison studies are also made against Nouy's generalized spectral decomposition scheme to demonstrate that the proposed approach provides a number of computational advantages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We present stochastic projection schemes for approximating the solution of a class of deterministic linear elliptic partial differential equations defined on random domains. The key idea is to carry out spatial discretization using a combination of finite element methods and stochastic mesh representations. We prove a result to establish the conditions that the input uncertainty model must satisfy to ensure the validity of the stochastic mesh representation and hence the well posedness of the problem. Finite element spatial discretization of the governing equations using a stochastic mesh representation results in a linear random algebraic system of equations in a polynomial chaos basis whose coefficients of expansion can be non‐intrusively computed either at the element or the global level. The resulting randomly parametrized algebraic equations are solved using stochastic projection schemes to approximate the response statistics. The proposed approach is demonstrated for modeling diffusion in a square domain with a rough wall and heat transfer analysis of a three‐dimensional gas turbine blade model with uncertainty in the cooling core geometry. The numerical results are compared against Monte–Carlo simulations, and it is shown that the proposed approach provides high‐quality approximations for the first two statistical moments at modest computational effort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Crack propagation in metals has long been recognized as a stochastic process. As a consequence, crack propagation rates have been modeled as random variables or as random processes of the continuous. On the other hand, polynomial chaos is a known powerful tool to represent general second order random variables or processes. Hence, it is natural to use polynomial chaos to represent random crack propagation data: nevertheless, no such application has been found in the published literature. In the present article, the large replicate experimental results of Virkler et al. and Ghonem and Dore are used to illustrate how polynomial chaos can be used to obtain accurate representations of random crack propagation data. Hermite polynomials indexed in stationary Gaussian stochastic processes are used to represent the logarithm of crack propagation rates as a function of the logarithm of stress intensity factor ranges. As a result, crack propagation rates become log-normally distributed, as observed from experimental data. The Karhunen–Loève expansion is used to represent the Gaussian process in the polynomial chaos basis. The analytical polynomial chaos representations derived herein are shown to be very accurate, and can be employed in predicting the reliability of structural components subject to fatigue.  相似文献   

4.
This work presents a novel approach, referred here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA), for the solution of stochastic steady state diffusion problems. The proposed approach utilizes generalized ANOVA (G-ANOVA) expansion to represent the unknown stochastic response and Galerkin projection to decompose the stochastic differential equation into a set of coupled differential equations. The coupled set of partial differential equations obtained are solved using finite difference method and homotopy algorithm. Implementation of the proposed approach for solving stochastic steady state diffusion problems has been illustrated with three numerical examples. For all the examples, results obtained are in excellent agreement with the benchmark solutions. Additionally, for the second and third problems, results obtained have also been compared with those obtained using polynomial chaos expansion (PCE) and conventional G-ANOVA. It is observed that the proposed approach yields highly accurate result outperforming both PCE and G-ANOVA. Moreover, computational time required using GG-ANOVA is in close proximity of G-ANOVA and less as compared to PCE.  相似文献   

5.
Isogeometric analysis which extends the finite element method through the usage of B-splines has become well established in engineering analysis and design procedures. In this paper, this concept is considered in context with the methodology of polynomial chaos as applied to computational stochastic mechanics. In this regard it is noted that many random processes used in several applications can be approximated by the chaos representation by truncating the associated series expansion. Ordinarily, the basis of these series are orthogonal Hermite polynomials which are replaced by B-spline basis functions. Further, the convergence of the B-spline chaos is presented and substantiated by numerical results. Furthermore, it is pointed out, that the B-spline expansion is a generalization of the Legendre multi-element generalized polynomial chaos expansion, which is proven by solving several stochastic differential equations.  相似文献   

6.
A stochastic response surface method (SRSM) which has been previously proposed for problems dealing only with random variables is extended in this paper for problems in which physical properties exhibit spatial random variation and may be modeled as random fields. The formalism of the extended SRSM is similar to the spectral stochastic finite element method (SSFEM) in the sense that both of them utilize Karhunen–Loeve (K–L) expansion to represent the input, and polynomial chaos expansion to represent the output. However, the coefficients in the polynomial chaos expansion are calculated using a probabilistic collocation approach in SRSM. This strategy helps us to decouple the finite element and stochastic computations, and the finite element code can be treated as a black box, as in the case of a commercial code. The collocation-based SRSM approach is compared in this paper with an existing analytical SSFEM approach, which uses a Galerkin-based weighted residual formulation, and with a black-box SSFEM approach, which uses Latin Hypercube sampling for the design of experiments. Numerical examples are used to illustrate the features of the extended SRSM and to compare its efficiency and accuracy with the existing analytical and black-box versions of SSFEM.  相似文献   

7.
We address the curse of dimensionality in methods for solving stochastic coupled problems with an emphasis on stochastic expansion methods such as those involving polynomial chaos expansions. The proposed method entails a partitioned iterative solution algorithm that relies on a reduced‐dimensional representation of information exchanged between subproblems to allow each subproblem to be solved within its own stochastic dimension while interacting with a reduced projection of the other subproblems. The proposed method extends previous work by the authors by introducing a reduced chaos expansion with random coefficients. The representation of the exchanged information by using this reduced chaos expansion with random coefficients enables an expeditious construction of doubly stochastic polynomial chaos expansions that separate the effect of uncertainty local to a subproblem from the effect of statistically independent uncertainty coming from other subproblems through the coupling. After laying out the theoretical framework, we apply the proposed method to a multiphysics problem from nuclear engineering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Using non-orthogonal polynomial expansions, a recursive approach is proposed for the random response analysis of structures under static loads involving random properties of materials, external loads, and structural geometries. In the present formulation, non-orthogonal polynomial expansions are utilized to express the unknown responses of random structural systems. Combining the high-order perturbation techniques and finite element method, a series of deterministic recursive equations is set up. The solutions of the recursive equations can be explicitly expressed through the adoption of special mathematical operators. Furthermore, the Galerkin method is utilized to modify the obtained coefficients for enhancing the convergence rate of computational outputs. In the post-processing of results, the first- and second-order statistical moments can be quickly obtained using the relationship matrix between the orthogonal and the non-orthogonal polynomials. Two linear static problems and a geometrical nonlinear problem are investigated as numerical examples in order to illustrate the performance of the proposed method. Computational results show that the proposed method speeds up the convergence rate and has the same accuracy as the spectral finite element method at a much lower computational cost, also, a comparison with the stochastic reduced basis method shows that the new method is effective for dealing with complex random problems.  相似文献   

9.
Given their mathematical structure, methods for computational stochastic analysis based on orthogonal approximations and projection schemes are well positioned to draw on developments from deterministic approximation theory. This is demonstrated in the present paper by extending basis enrichment from deterministic analysis to stochastic procedures involving the polynomial chaos decomposition. This enrichment is observed to have a significant effect on the efficiency and performance of these stochastic approximations in the presence of non‐continuous dependence of the solution on the stochastic parameters. In particular, given the polynomial structure of these approximations, the severe degradation in performance observed in the neighbourhood of such discontinuities is effectively mitigated. An enrichment of the polynomial chaos decomposition is proposed in this paper that can capture the behaviour of such non‐smooth functions by integrating a priori knowledge about their behaviour. The proposed enrichment scheme is applied to a random eigenvalue problem where the smoothness of the functional dependence between the random eigenvalues and the random system parameters is controlled by the spacing between the eigenvalues. It is observed that through judicious selection of enrichment functions, the spectrum of such a random system can be more efficiently characterized, even for systems with closely spaced eigenvalues. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with stochastic boundary value problems (SBVPs) whose formulation involves inequality constraints. A class of stochastic variational inequalities (SVIs) is defined, which is well adapted to characterize the solution of specified inequality‐constrained SBVPs. A methodology for solving such SVIs is proposed, which involves their discretization by projection onto polynomial chaos and collocation of the inequality constraints, followed by the solution of a finite‐dimensional constrained optimization problem. Simulation studies in contact and elastoplasticity are provided to demonstrate the proposed framework. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a non‐intrusive stochastic model reduction scheme is developed for polynomial chaos representation using proper orthogonal decomposition. The main idea is to extract the optimal orthogonal basis via inexpensive calculations on a coarse mesh and then use them for the fine‐scale analysis. To validate the developed reduced‐order model, the method is implemented to: (1) the stochastic steady‐state heat diffusion in a square slab; (2) the incompressible, two‐dimensional laminar boundary‐layer over a flat plate with uncertainties in free‐stream velocity and physical properties; and (3) the highly nonlinear Ackley function with uncertain coefficients. For the heat diffusion problem, the thermal conductivity of the slab is assumed to be a stochastic field with known exponential covariance function and approximated via the Karhunen–Loève expansion. In all three test cases, the input random parameters are assumed to be uniformly distributed, and a polynomial chaos expansion is found using the regression method. The Sobol's quasi‐random sequence is used to generate the sample points. The numerical results of the three test cases show that the non‐intrusive model reduction scheme is able to produce satisfactory results for the statistical quantities of interest. It is found that the developed non‐intrusive model reduction scheme is computationally more efficient than the classical polynomial chaos expansion for uncertainty quantification of stochastic problems. The performance of the developed scheme becomes more apparent for the problems with larger stochastic dimensions and those requiring higher polynomial order for the stochastic discretization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An enrichment scheme based upon the Neumann expansion method is proposed to augment the deterministic coefficient vectors associated with the polynomial chaos expansion method. The proposed approach relies upon a split of the random variables into two statistically independent sets. The principal variability of the system is captured by propagating a limited number of random variables through a low-ordered polynomial chaos expansion method. The remaining random variables are propagated by a Neumann expansion method. In turn, the random variables associated with the Neumann expansion method are utilised to enrich the polynomial chaos approach. The effect of this enrichment is explicitly captured in a new augmented definition of the coefficients of the polynomial chaos expansion. This approach allows one to consider a larger number of random variables within the scope of spectral stochastic finite element analysis in a computationally efficient manner. Closed-form expressions for the first two response moments are provided. The proposed enrichment method is used to analyse two numerical examples: the bending of a cantilever beam and the flow through porous media. Both systems contain distributed stochastic properties. The results are compared with those obtained using direct Monte Carlo simulations and using the classical polynomial chaos expansion approach.  相似文献   

13.
Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-state-of-the art methods for fragility computation rely on full non-linear time–history analyses. Within this perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground motions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters — which are regarded as IMs in this context. The computation of such fragility models is a challenge on its own and, despite a few recent studies, there is still an important research gap in this domain. This comes with no surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature of SGMM. This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art methods in two case studies. The numerical results show that the new method prevails over its competitors in estimating both the conditional distribution and the fragility functions.  相似文献   

14.
A methodology is introduced for rapid reduced‐order solution of stochastic partial differential equations. On the random domain, a generalized polynomial chaos expansion (GPCE) is used to generate a reduced subspace. GPCE involves expansion of the random variable as a linear combination of basis functions defined using orthogonal polynomials from the Askey series. A proper orthogonal decomposition (POD) approach coupled with the method of snapshots is used to generate a reduced solution space from the space spanned by the finite element basis functions on the spatial domain. POD methods have been extremely popular in fluid mechanics applications and have subsequently been applied to other interesting areas. They have been shown to be capable of representing complicated phenomena with a handful of degrees of freedom. This concurrent model reduction on the random and spatial domains is applied to stochastic partial differential equations (PDEs) in natural convection processes involving randomness in the porosity of the medium and the Rayleigh number. The results indicate that owing to the multiplicative nature of the concurrent model reduction, extremely large computational gains are realized without significant loss of accuracy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
B PASCUAL  S ADHIKARI 《Sadhana》2012,37(3):319-340
The stochastic finite element analysis of elliptic type partial differential equations is considered. A reduced method of the spectral stochastic finite element method using polynomial chaos is proposed. The method is based on the spectral decomposition of the deterministic system matrix. The reduction is achieved by retaining only the dominant eigenvalues and eigenvectors. The response of the reduced system is expanded as a series of Hermite polynomials, and a Galerkin error minimization approach is applied to obtain the deterministic coefficients of the expansion. The moments and probability density function of the solution are obtained by a process similar to the classical spectral stochastic finite element method. The method is illustrated using three carefully selected numerical examples, namely, bending of a stochastic beam, flow through porous media with stochastic permeability and transverse bending of a plate with stochastic properties. The results obtained from the proposed method are compared with classical polynomial chaos and direct Monte Carlo simulation results.  相似文献   

16.
Input data to a numerical model are not necessarily well known. Uncertainties may exist both in material properties and in the geometry of the device. They can be due, for instance, to ageing or imperfections in the manufacturing process. Input data can be modelled as random variables leading to a stochastic model. In electromagnetism, this leads to solution of a stochastic partial differential equation system. The solution can be approximated by a linear combination of basis functions rising from the tensorial product of the basis functions used to discretize the space (nodal shape function for example) and basis functions used to discretize the random dimension (a polynomial chaos expansion for example). Some methods (SSFEM, collocation) have been proposed in the literature to calculate such approximation. The issue is then how to compare the different approaches in an objective way. One solution is to use an appropriate a posteriori numerical error estimator. In this paper, we present an error estimator based on the constitutive relation error in electrokinetics, which allows the calculation of the distance between an average solution and the unknown exact solution. The method of calculation of the error is detailed in this paper from two solutions that satisfy the two equilibrium equations. In an example, we compare two different approximations (Legendre and Hermite polynomial chaos expansions) for the random dimension using the proposed error estimator. In addition, we show how to choose the appropriate order for the polynomial chaos expansion for the proposed error estimator. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A surrogate stochastic reduced order model is developed for the analysis of randomly parametered structural systems with complex geometries. It is assumed that the mathematical model is available in terms of large ordered finite element (FE) matrices. The structure material properties are assumed to have spatial random inhomogeneities and are modelled as non-Gaussian random fields. A polynomial chaos expansion (PCE) based framework is developed for modelling the random fields directly from measurements and for uncertainty quantification of the response. Difficulties in implementing PCE due to geometrical complexities are circumvented by adopting PCE on a geometrically regular domain that bounds the physical domain and are shown to lead to mathematically equivalent representation. The static condensation technique is subsequently extended for stochastic cases based on PCE formalism to obtain reduced order stochastic FE models. The efficacy of the method is illustrated through two numerical examples.  相似文献   

18.
This paper presents a new module towards the development of efficient computational stochastic mechanics. Specifically, the possibility of an adaptive polynomial chaos expansion is investigated. Adaptivity in this context refers to retaining, through an iterative procedure, only those terms in a representation of the solution process that are significant to the numerical evaluation of the solution. The technique can be applied to the calculation of statistics of extremes for nongaussian processes. The only assumption involved is that these processes be the response of a nonlinear oscillator excited by a general stochastic process. The proposed technique is an extension of a technique developed by the second author for the solution of general nonlinear random vibration problems. Accordingly, the response process is represented using its Karhunen-Loeve expansion. This expansion allows for the optimal encapsulation of the information contained in the stochastic process into a set of discrete random variables. The response process is then expanded using the polynomial chaos basis, which is a complete orthogonal set in the space of second-order random variables. The time dependent coefficients in this expansion are then computed by using a Galerkin projection scheme which minimizes the approximation error involved in using a finite-dimensional subspace. These coefficients completely characterize the solution process, and the accuracy of the approximation can be assessed by comparing the contribution of successive coefficients. A significant contribution of this paper is the development and implimentation of adaptive schemes for the polynomial chaos expansion. These schemes permit the inclusion of only those terms in the expansion that have a significant contribution.  相似文献   

19.
The uncertain spatial variation of material properties can remarkably affect the band gap characteristics of phononic crystals (PnCs). It is necessary to consider this issue when designing and manufacturing PnC materials/structures. This paper investigates a robust topology optimization method for designing the microstructures of PnCs by considering random‐field material properties. Herein, the spatial distribution of the material properties is first represented by a random field and then discretized into uncorrelated stochastic variables with the expansion optimal linear estimation method; stochastic band gap analysis is then conducted with polynomial chaos expansion. Furthermore, a robust topology optimization formulation of PnCs is proposed on the basis of the relative elemental density, where a weighted objective function handles the compromise of the mean value and standard deviation of the PnC band gap. The band gap response is analyzed, employing the finite element method for each sample of polynomial chaos expansion. In this context, the sensitivities of the stochastic band gap behaviors to the design variables are also derived. Numerical examples demonstrate that the proposed method can generate meaningful optimal topologies of PnCs with a relatively large width and less sensitive band gap. Additionally, the effects of the weight factors in the objective function and the variation coefficient of material properties are discussed.  相似文献   

20.
This article presents a numerical procedure to compute the stochastic dynamic response of large finite element models with uncertain parameters based on polynomial chaos and component mode synthesis methods. Polynomial chaos expansions at higher orders are used to derive the statistical solution of the dynamic response as well as the Monte Carlo simulation procedure. Based on various component mode synthesis methods, the size of the model is reduced. These methods are coupled with polynomial chaos expansion and the explicit mathematical formulations are given. Numerical results illustrating the accuracy and efficiency of the proposed coupled methodological procedures are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号