首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
非通风状态新型地下粮仓储粮温度场的CFD数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
地下粮仓储粮温度场是保证储粮品质和绿色生态储粮的重要影响因素。针对地下粮仓试验仓,该文利用Gambit软件建立了地下粮仓的三维立体模型,并对模型进行了网格划分,采用CFD数值模拟方法研究了非通风状态地下粮仓粮食储存过程中粮堆温度场的变化规律。通过编写和导入UDF函数,改进CFD软件中的质量控制方程、动量控制方程和壁面热量传递控制方程,通过迭代计算和基于CFD软件模拟得到了地下粮仓非通风状态条件下温度场的变化规律,研究结果表明,随着地下仓储粮时间的变长,仓内粮堆温度与周围维护结构之间、粮堆之间不停的进行着热质交换,最终温度逐渐趋于当地地下恒温温度值附近,地下仓可以作为一种经济适用的仓型来推广;同时,本文的研究可以为地下粮仓的温度场控制提供参考和依据,为粮堆机械通风手段作为参考。  相似文献   

2.
粮食温度是影响储粮安全的最重要因素之一,为揭示半地下双层浅圆仓的储粮温度场分布规律,本文建立了地上浅圆仓和地下仓的粮堆数学分析模型,并通过现场实验结果验证了模型的有效性。以此为基础建立了半地下双层浅圆仓数值模型,分析低温入粮后静态储藏1年期间的粮堆温度场变化规律。结果表明:半地下双层浅圆仓地上层靠近仓壁2 m内的粮温受外界气温影响变化明显,温度范围在10.62~27.37℃,地下层粮温常年处在准低温状态,平均温度不超过地下恒温区温度17℃;入冬时地上层粮堆在距仓壁1~3 m之间会短期形成一个热量聚集区,导致近仓壁处粮堆温差较大,随后外围区温度缓慢降低,形成“热心冷皮”;仓壁的保温隔热措施可有效减小气温对粮温的影响,地上层夏季最高粮温较未做保温的地上浅圆仓低3.86℃左右。研究结果可为半地下双层浅圆仓的推广应用提供技术支持。  相似文献   

3.
准静态仓储粮堆温度场的CFD模拟   总被引:3,自引:5,他引:3  
现有仓储粮堆数学模型难以有效模拟实际粮堆温度的变化过程.本试验应用计算流体力学(CFD)方法模拟研究了仓储粮堆在不通风情况下温度场的变化情况,根据粮仓结构和仓外环境条件,通过确定模拟区域、网格划分、模型选择,确定了合理的CFD模拟方案,得到并分析了两种不同尺度粮仓内仓储粮堆温度随季节变化过程的模拟结果.通过对准静态仓储粮堆内部温度随环境温度变化过程的分析,为仓储通风系统的优化设计提供了有价值的参考依据,为进一步的模拟研究奠定了良好基础.  相似文献   

4.
粮温是影响粮食安全的重要因素,论文采用地下模拟试验、工程性试验与数值仿真相结合的方法,研究了地下生态粮仓的粮食温度变化规律。通过在试验仓内布设测温电缆,定时定点监测温度,获取仓内各测点的温度变化规律。以地下储粮环境条件为基础,构建了模拟试验仓的物理模型,用数值方法分析了仓内粮食的温度场,并与试验结果对比,验证了数值方法的有效性。据此对工程性试验仓不同入仓时间的粮食温度场进行了数值分析,发现地下粮仓入粮应优先选择冬季,夏季入粮时因粮温较高应采取适当方式(如机械通风)降低粮食温度,以实现低温储藏。研究表明:埋深较深的工程性试验仓的储粮效果优于模拟试验仓;地下生态粮仓仓内粮食温度随着储存时间的增加基本保持稳定,且逐渐趋于地温;模拟试验仓粮温稳定在20℃左右,工程性试验仓粮温稳定在17℃左右,而对应地上仓平均粮温在25℃左右,局部粮温高达30℃,随季节变化较大。因而地下生态粮仓具有恒低温储粮的优势,有利于保证粮食品质和储粮安全。  相似文献   

5.
以初始温度为26℃,边长为1 m并设有冷、热壁面的方形玉米粮堆仓为研究对象,利用数值模拟软件COMSOL,对仓内粮堆温度场进行数值模拟分析,并基于验证的模型研究粮堆内外存在温差时,其内部温度随时间的变化规律。结果表明:靠近冷、热壁面的粮堆温度变化较快;仓内粮堆温度在冷热壁面间形成梯度,出现分层现象;不同初始粮温条件下,壁面与粮堆温差影响仓内粮堆温度分布,储藏96 h后,初始粮温为22℃的粮堆温度变化幅度最大,为24.9℃;粮堆与壁面温差较大的条件下,热量传递较快,仓内粮堆温度逐渐趋于稳定;初始粮温一致,不同种类粮食条件下,在储藏192 h后,大豆、小麦、玉米、稻谷和油菜籽仓内粮堆最终温升分别为2.21、2.18、2.17、2.64和2.40℃;密度和孔隙率差异共同影响仓内粮堆温度的分布,孔隙率较大的玉米粮堆,温度更加均匀。  相似文献   

6.
采用阵列式分布的测温电缆检测粮仓温度变化情况,利用机器学习技术来预测粮食温度,用粮仓一年监测数据来预测粮堆未来27天温度。传统的BP、RBF、RF、SVR单模型对粮堆温度进行预测存在误差大、泛化能力差等缺点,提出一种基于Bagging集成的鲸鱼算法优化支持向量回归模型(Bagging-WOA-SVR),并与灰狼算法优化支持向量回归模型作比较。将影响粮堆温度的多种因素做灰色关联分析,选取粮仓内温度、粮仓内湿度、粮仓外温度、粮仓外湿度、粮仓平均温度、地表温度作为神经网络的输入,粮堆平均温度作为预测输出,选取三个指标为评判标准,对比分析模型预测精度。结果表明:提出的Bagging-WOA-SVR模型相比之下有着较好的稳定性,均方误差为0.24,相关系数为0.9892。  相似文献   

7.
粮堆温度场的分布受储粮压力变化的影响较大。利用自制粮堆实验装置进行了三种不同储粮压力下玉米粮堆静态储藏实验。通过在两壁面提供恒定的温度梯度,竖向方向施加不同压力构建出粮仓内多因子实验环境。根据测点数据拟合出了不同时刻温度分布云图,以及不同储粮压力下温度场变化趋势,得出储粮压力对玉米粮堆温度场的影响规律。并采用COMSOL软件对不同工况下温度场的分布进行数值模拟,模拟结果验证了随着储粮压力增大,粮堆内热量传递也变缓慢,达到稳态时的温度也越低。  相似文献   

8.
王森  张淑媛  周阳  侯耀龙 《中国油脂》2023,48(8):137-141
为研究大豆在机械通风过程中的温度变化,以华北地区内径为30 m、装粮高度为20 m的钢筋混凝土浅圆仓为研究对象,基于多孔介质传热传质理论,利用数值模拟软件COMSOL建立大豆储藏过程中粮堆内部温度变化的数值模型,利用此模型对机械通风过程浅圆仓大豆粮堆温度场进行了分析,并预测了不同初始粮温和装粮高度条件下仓内粮堆温度变化过程。结果表明:随着与风道距离的增加,粮层温度变化幅度由剧烈逐渐变得缓慢;粮堆热阻的存在导致热量在整个粮堆的传递过程表现出一定的迟滞性,从而使整个粮堆温度分布不均;初始粮温分别为12、14、16、18、20℃时,机械通风86 h后仓内粮温分别降至4.9、6.2、7.3、8.4℃和9.6℃,分别下降了59%、56%、54%、53%和52%,在相同边界条件下,初始温度较低的粮堆,粮温降幅较大;机械通风过程,不同装粮高度(18、19 m和20 m)的粮堆温度变化差异呈现先增大后减小的趋势,在机械通风19 h和110 h后,装粮高度相差1 m时,粮堆之间温差分别为0.1℃和0.6℃,在机械通风结束后,仓内粮堆温度分别为0.3、0.5℃和0.9℃,此时装粮高度相差1 m时,粮堆之间...  相似文献   

9.
通过数值模拟的方法对考虑呼吸作用的密闭粮仓内温度和水分随时间的变化进行了探究。在数值模拟过程中,对真实粮仓进行适当的简化,建立数学模型,利用有限元法,对不同初始温度的粮堆进行数值模拟分析,研究粮堆内部温度和水分变化与呼吸作用的关系,当粮堆的初始温度较高时,呼吸作用对粮堆温度和水分的影响非常显著。利用研究结果可以为粮堆进行合理的"人工干预"提供理论依据。  相似文献   

10.
国家粮食储备多以平房仓为主要存储仓型,储粮粮堆在夏季时受到外界持续传热而会达到较高温度,而且微生物生长繁殖会进一步引起粮堆内部发热,对安全储粮产生危害。为了确保储粮品质,控制储粮温度,粮仓温度场预测系统的研究与应用就愈显重要。基于神经网络模型,以BP神经网络预测模型为主要研究对象,并选取典型高大平房仓实际粮情监测数据为实例,在MATLAB平台进行仿真,通过实测数据进行训练,构建实测模型。分析了粮食温度场的影响因素,采用SPSS统计学软件确定了影响因素的权重大小,并采用神经网络方法验证了主成分分析的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号