共查询到19条相似文献,搜索用时 89 毫秒
1.
《计算机应用与软件》2017,(1)
微博作为一种流行的信息交流平台,已经受到人们的广泛关注。如今有关微博搜索结果处理的研究也已经成为热点,其中微博对比话题摘要是一个比较新颖的微博搜索结果处理方法。不同于基于微博消息的对比话题摘要生成算法,基于话题集合的中文微博对比话题摘要生成算法是将话题集合进行对比并生成微博对比话题摘要。实验数据表明,以话题集合为单位生成对比话题摘要可以改善单条微博消息信息量不足的缺点,提高对比话题摘要的代表性。 相似文献
2.
3.
微博用户影响力分析作为社交网络分析的重要组成部分,一直受到研究人员的关注。针对现有研究工作分析用户行为时间性的不足和忽略用户与参与话题之间关联性等问题,提出了一种面向微博话题的用户影响力分析算法——基于话题和传播能力的用户排序(TSRank)算法。首先,基于微博话题分析用户转发行为时间性,进一步构建用户转发和用户博文转发两种话题转发关系网络,预测用户话题信息传播能力;然后,分析用户个人历史微博和背景话题微博文本内容,挖掘用户与背景话题之间的关联性;最后,综合考虑用户话题信息传播能力以及用户与背景话题间关联性计算微博用户影响力。爬取新浪微博真实话题数据进行实验,实验结果表明,话题关联度更高用户的话题转发量明显大于关联度很低的用户,引入用户转发行为时间性相比无转发时间性,TSRank算法的捕获率(CR)提高了18.7%,进一步与典型影响力分析算法WBRank、TwitterRank和PageRank相比,TSRank算法在准确率和召回率上分别提高了5.9%、8.7%、13.1%和6.7%、9.1%、14.2%,验证了TSRank算法的有效性。该研究成果对社交网络的社会属性、话题传播等理论研究以及好友推荐、舆情监控等应用研究具有支撑作用。 相似文献
4.
基于滑动窗口的微博时间线摘要算法 总被引:1,自引:0,他引:1
时间线摘要是在时间维度上对文本进行内容归纳和概要生成的技术。传统的时间线摘要主要研究诸如新闻之类的长文本,而本文研究微博短文本的时间线摘要问题。由于微博短文本内容特征有限,无法仅依靠文本内容生成摘要,本文采用内容覆盖性、时间分布性和传播影响力3种指标评价时间线摘要,并提出了基于滑动窗口的微博时间线摘要算法(Microblog timeline summariaztion based on sliding window, MTSW)。该算法首先利用词项强度和熵来确定代表性词项;然后基于上述3种指标构建出评价时间线摘要的综合评价指标;最后采用滑动窗口的方法,遍历时间轴上的微博消息序列,生成微博时间线摘要。利用真实微博数据集的实验结果表明,MTSW算法生成的时间线摘要可以有效地反映热点事件发展演化的过程。 相似文献
5.
7.
在传统的K-means算法中,聚类结果很大程度依赖于随机选择的初始聚类中心点以及人工指定的k值.为了提高聚类精度,本文提出了利用最小距离与平均聚集度来对初始聚类中心点进行选取,将层次聚类CURE算法得到的聚簇数作为k值,从而使聚类精度得到提高.最后,将改进后的K-means算法应用到微博话题发现中,通过对实验结果分析,证明该算法提高了聚类结果精度. 相似文献
8.
随着社交网络的发展,微博逐渐成为人们获取信息的重要来源。然而随着用户的增多,微博中的信息过载问题也越来越严重,如何快速准确地为用户推荐感兴趣的微博已经成为研究的热点。与传统的推荐技术不同,微博中的用户具有天然的社交关系,这为推荐算法提供了额外的用户信息,因此,融合了用户社交关系的社会化推荐方法日益受到重视。但是,现有的方法大多只利用了固定的用户社交关系或简单的互动行为,事实上,用户互动行为的出发点必然是用户与好友的共同兴趣,具有明显的话题相关性。该文从话题层面来分析用户的互动关系,提出了度量互动关系在话题上强弱度的方法,通过有效地融合互动关系的话题特征,最终提出了改进的微博推荐模型IBCF。实验结果表明,与现有的社会化推荐方法相比,该文提出的新方法在MAP和NDCG等指标上取得了更好的推荐效果,而且为推荐结果提供了更明确的可解释性。 相似文献
9.
事件以话题形式在微博中迅速传播,并能够产生巨大的影响力。因此,对 参与 话题传播过程的用户进行分析以及发现具有不同主题兴趣情感倾向性的群体受到政府和企业的广泛关注。现阶段,绝大多数应用到微博的群体发现算法都是从单个用户出发,仅考虑了用户社会联系,与用户共享内容相隔离,其群体发现的结果不具有语义信息。少数算法综合了用户社会联系与内容,却忽略了微博本身的结构特性。因此从微博话题的角度出发,综合考虑话题传播过程中的用户交互、微博文本内容以及情感极性,同时结合用户的行为信息,提出了一个基于概率生成模型的微博话题传播群体划分方法BP-STG。采用吉布斯抽样对模型进行推导,不仅能够挖掘出具有不同主题倾向性的群体,同时还能够挖掘出群体的情感倾向分布以及用户在群体中的活跃度及其行为表现。此外,模型还能够推广到许多带有社交网络性质的媒体中。在获取的新浪微博两个话题数据集上的实验表明,BP-STG模型不仅能够有效地对微博话题传播群体进行划分,而且能够发现群体内部活跃用户以及用户在群体中的行为模式。 相似文献
10.
《计算机应用与软件》2016,(3)
在微博热点话题发现中,微博文本短、词量少、时效性高,传统的话题检测方法不再适用。针对这些新的特点,提出一种基于微博文本和元数据的话题发现方法。首先利用微博发布时间、用户信息、微博转发评论等元数据构造描述微博词汇能量的复合权值,进而提取出话题的主题词汇,然后基于上下文关系构造主题词汇簇,最后对微博文本进行二次聚类,从而得到微博中的隐含话题以及相关微博文本。在真实微博数据上的实验表明,该方法能有效发现热门话题,提高话题检测的准确率和查全率。 相似文献
11.
随着微博的发展,其影响力日益增大,对微博主题内容进行分析具有重要的价值.主题模型技术能够从文本数据中提取主题,但是,由于微博文本短、随意性大、信息量小等特点,微博主题的分析具有一定的难度.提出了一个微博主题可视分析系统,利用多种互相关联的视图与丰富的交互手段,支持用户对主题模型结果进行分析与探索.系统结合了微博数据的特点,引入微博用户与时间因素,支持分析者从多角度对微博主题进行全面分析.系统支持用户在主题可视分析的基础上,通过交互操作对主题进行编辑,从而改进主题模型,提高模型的准确性和可靠性.案例分析结果表明,提出的系统可以有效地帮助用户分析微博主题和修正主题. 相似文献
12.
提出了基于LDA(latent Dirichlet allocation)重要主题的多文档自动摘要算法。该算法与已有的基于主题模型的多文档自动摘要算法主要有两点区别:第一,在计算句子主题与文档主题相似度问题上,引入并定义了主题重要性的概念,将LDA模型建立的主题分成重要和非重要主题两类,计算句子权重时重点考虑句子主题和文档重要主题的相似性;第二,该方法同时使用句子的词频、位置等统计特征和LDA特征组成的向量计算句子的权重,既突出了传统的统计特征的显著优势,又结合了LDA模型的主题概念。实验表明,该算法在DUC2002标准数据集上取得了较好的摘要效果。 相似文献
13.
14.
从案件相关的话题评论中生成简短的话题描述对于快速了解案件舆情有着重要作用, 其可以看做是基于用户评论的多文档摘要任务. 然而用户评论中含有较多噪声且生成摘要所需的重要信息分散在不同的评论句中, 直接基于序列模型容易生成错误或不相关的摘要. 为了缓解上述问题, 提出一种基于主题交互图的案件话题摘要方法, 将嘈杂的用户评论组织为主题交互图, 利用图来表达不同用户评论之间的关联关系, 从而过滤重要的用户评论信息. 具体来说, 首先从评论句中抽取案件要素, 然后构造以案件要素为节点, 包含案件要素的句子为内容的主题交互图; 然后利用图Transformer网络生成图中节点的表征, 最后生成简短的话题描述. 在收集的案件话题摘要数据集上的实验结果表明, 所提方法是一种有效的数据选择方法, 能够生成连贯、事实正确的话题摘要. 相似文献
15.
16.
带有时间标志的演化式摘要是近年来提出的自然语言处理任务,其本质是多文档自动文摘,它的研究对象是互联网上连续报道的热点新闻文档。针对互联网新闻事件报道的动态演化、动态关联和信息重复等特点,该文提出了一种基于局部—全局主题关系的演化式摘要方法,该方法将新闻事件划分为多个不同的子主题,在考虑时间演化的基础上同时考虑子主题之间的主题演化,最后将新闻标题作为摘要输出。实验结果表明,该方法是有效的,并且在以新闻标题作为输入输出时,和当前主流的多文档摘要和演化摘要方法相比,在Rouge评价指标上有显著提高。 相似文献
17.
话题演化分析是舆情监控的研究热点之一,面向微博热点话题进行演化分析,对于网络用户以及网络监管部门都有很重要的现实意义。针对在线词对主题模型(On-line Biterm Topic Model,OBTM)新旧主题混合、冗余词概率相对较高的问题,对OBTM进行改进,提出基于话题标签和先验参数的OBTM模型(Topic Labels and Prior Parameters OBTM,LPOBTM)。根据微博热点话题的话题标签,将微博文本集区分为含话题标签和不含话题标签的两类数据集,并设置不同的文档-主题先验参数;在前一时间片文档-主题概率分布的基础上,借鉴Sigmod函数对所有主题进行强度排名,从而优化当前时间片上主题-词分布的先验参数计算方法。实验结果表明,LPOBTM能够更准确地描述话题的内容演化情况,并且有更低的模型困惑度。 相似文献
18.
基于MB-LDA模型的微博主题挖掘 总被引:5,自引:0,他引:5
随着微博的日趋流行,Twitter等微博网站已成为海量信息的发布体,对微博的研究也需要从单一的用户关系分析向微博本身内容的挖掘进行转变.在数据挖掘领域,尽管传统文本的主题挖掘已经得到了广泛的研究,但对于微博这种特殊的文本,因其本身带有一些结构化的社会网络方面的信息,传统的文本挖掘算法不能很好地对它进行建模.提出了一个基于LDA的微博生成模型MB-LDA,综合考虑了微博的联系人关联关系和文本关联关系,来辅助进行微博的主题挖掘.采用吉布斯抽样法对模型进行推导,不仅能挖掘出微博的主题,还能挖掘出联系人关注的主题.此外,模型还能推广到许多带有社交网络性质的文本中.在真实数据集上的实验表明,MB-LDA模型能有效地对微博进行主题挖掘. 相似文献
19.
微博具有长度短、实时传播、结构复杂以及变形词多等特点,传统的向量空间模型(VSM)文本表示方法和隐含语义分析(LSA)无法很好的对其进行建模。提出了一种基于概率潜在语义分析(pLSA)和 K 均值聚类(Kmeans)的二阶段聚类算法,此外通过定义微博热度分析和排序,有效地支持微博热点话题发现。实验表明,此方法能有效地进行话题聚类并检测出热点话题。 相似文献