首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
玄武岩纤维(BF)和玄武岩颗粒(BP)增强高密度聚乙烯(PE-HD)力学性能优良,特别是硬度较高,用于防白蚁高压电缆护套的制造。首先利用硅烷偶联剂KH550对BF和BP进行表面改性,然后利用转矩流变仪熔融共混BP、BF和PE-HD,最后通过微型注塑机制备不同填料含量的PE-HD/BF/BP复合材料。通过扫描电子显微镜、差示扫描量热仪、同步热分析仪、万能试验机、动态力学性能分析仪、邵氏硬度计、流变仪等研究复合材料的形态、力学性能、结晶性能、热稳定性能及流变性能等。结果表明,与PE-HD相比,BF和BP填料的引入显著增强了PE-HD/BF/BP复合材料的力学性能和热稳定性能,当BF含量为20份,BP含量为10份时(BF20BP10),复合材料的力学性能最优,拉伸强度和拉伸弹性模量分别为47.51 MPa和3 331.39 MPa,分别增加了41.7%和211%,硬度达到70.2HD,明显超出防白蚁电缆对硬度的要求,即大于65HD,因此具有更优异的防白蚁啃食性能。与其它配方相比,BF20BP10复合材料具有较高的结晶度、储能模量,较小的损耗因子。因此,PE-HD/BF/BP复合材料的最优配方...  相似文献   

2.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

3.
通过双螺杆挤出制备了苎麻纤维增强高密度聚乙烯(PE HD)复合材料,并利用傅里叶红外光谱仪、扫描电子显微镜、差式扫描量热仪及热失重分析仪等分析仪器考察了苎麻纤维含量对于复合材料性能改善的效果。结果表明,在PE HD中添加苎麻纤维及一定量的相容剂后,苎麻纤维和基体树脂表面会形成酯键以增强两者之间的界面黏结;复合材料在应用温度(0~100 ℃)下不会出现热失重现象;苎麻纤维的加入会降低复合材料的结晶度;增大苎麻纤维的含量,能有效提高复合材料的热稳定性。  相似文献   

4.
采用玄武岩短纤维(BF)增强硅橡胶,制备了BF/硅橡胶复合材料,考察了硅烷偶联剂的种类、BF用量以及硫化条件对复合材料力学性能的影响,并用扫描电子显微镜观察了复合材料的微观形貌。结果表明,用KH 550对BF进行表面处理,所得复合材料的力学性能优于以Si 69处理的材料;当BF用量为20份时,BF/硅橡胶复合材料的力学性能最好;制备复合材料的最佳硫化条件为10 MPa×175℃×25 min;用KH 550处理BF,BF与硅橡胶的相容性比用Si 69处理的好。  相似文献   

5.
采用双螺杆挤出机制备了不同含量高密度聚乙烯(PE–HD)/硅酸钙(Ca Si O3)复合材料,并采用马来酸酐接枝聚乙烯作为相容剂对该复合材料进行改性,研究了相容剂含量对复合材料力学性能的影响。结果表明,随着相容剂含量的增加,复合材料的力学性能先增加后保持不变,综合考虑,相容剂含量为10份时,对复合材料的力学性能改性效果最佳。然后以此相容剂含量为基准,研究了Ca Si O3含量对复合材料力学性能和阻燃性能的影响。结果显示,随着Ca Si O3含量的增加,复合材料的冲击强度增加,拉伸强度先下降后上升,氧指数略有增加,垂直燃烧性能变化不大。这表明Ca Si O3的填充对PE–HD具有较好的增韧效果,对阻燃性能也有一定提高。  相似文献   

6.
龙洪生  薛平  丁筠  刘新阳 《中国塑料》2014,28(11):95-99
选用纺织工业废弃苎麻落麻纤维和造纸工业废弃的竹屑纤维为增强体,采用双螺杆熔融共混挤出工艺,制备天然纤维增强高密度聚乙烯(PE-HD)复合材料。考察纤维种类、含量变化对天然纤维增强复合材料熔体流动速率、微观断面形貌、拉伸性能、弯曲性能的影响。结果表明,2种废弃纤维都能有效提高PE-HD的拉伸性能和弯曲性能,其中苎麻落麻纤维的增强效果优于竹屑纤维,加入20% 苎麻落纤维复合材料拉伸强度比纯PE-HD提高21%,弯曲强度提高了41.9%。  相似文献   

7.
本研究选用无机填料凹凸棒土(AT)作为增强相,高密度聚乙烯(HDPE)为基体,改性聚乙烯(MPE)为改性剂,通过熔融共混法来制备了AT和改性高密度聚乙烯(MHDPE)复合材料。研究了AT的含量对MHDPE复合材料力学性能、微观形貌、吸水性能、亲水性能和耐热性能的影响。结果表明:加入少量的AT不仅可以均匀分散在MHDPE基体中,还可以提高其机械性能。当AT的含量为1%时,MHDPE/AT复合材料的拉伸强度和断裂伸长率都达到了最大值,分别为26 MPa和639.86%。相比较纯MHDPE提高了20.9%和22.8%,但加入过量会发生团聚现象,造成其机械性能下降;吸水和接触角测试结果显示随着AT含量的增加,MHDPE/AT复合材料表现出越来越亲水;热重分析测试结果可知适量的AT能够提高复合材料的耐热性能。因此,MHDPE在添加AT之后性能有明显的改善效果且有着广阔的应用前景,值得我们进一步研究。  相似文献   

8.
废纸/再生高密度聚乙烯复合材料的力学性能研究   总被引:1,自引:0,他引:1  
以废纸和再生HDPE为原料制备废纸/再生HDPE复合材料.采用红外光谱分析和差示扫描量热法分析手段研究了废纸和再生HDPE的基本特性,同时探讨了废纸用量、增容剂(硅烷偶联剂KH550和马来酸酐接枝聚乙烯MAPE)对复合材料力学性能的影响,并借助扫描电镜观察复合材料的拉伸断面形貌.结果表明:废纸能作为再生HDPE的增强体,且废纸质量分数为15%时,拉伸强度和弯曲强度分别为23.68 MPa、28.78 MPa;增容剂能改善复合材料的界面性质,提高复合材料的力学性能,KH550和MAPE最佳用量分别为1%和4%~6%.  相似文献   

9.
纳米碳管/高密度聚乙烯复合材料性能的研究   总被引:1,自引:0,他引:1  
冯学斌  赫秀娟 《炭素》2004,(1):32-35
应用熔融共混法制备纳米碳管/高密度聚乙烯复合材料。考查了纳米碳管含量及制备工艺对材料电性能和力学性能的影响。结果表明加入纳米碳管可以显著提高高密度聚乙烯的导电性,电阻率变化呈现渗流现象。渗流阈值在20%~25%之间,其电阻率下降8个数量级。随纳米碳管含量的增加复合材料的模量提高,断裂伸长率下降。经过对纳米碳管进行溶液浸润预处理,复合材料的导电性和力学性能均得到改善。  相似文献   

10.
采用熔融共混的方法制备了粉煤灰(FA)/高密度聚乙烯(HDPE)复合材料。研究了粉煤灰的粒径对复合材料的力学性能、热性能、加工性能、微观形貌和结晶性能的影响。结果表明,减小粉煤灰的粒径可以改善复合材料的韧性,当FA的粒径为2.4μm时,复合材料的断裂伸长率与冲击强度分别为54.1%、8.5 kJ/m2,比粒径为28μm时分别提高了42.7%和37.1%。随着粉煤灰粒径的减小,FA/HDPE复合材料的熔体质量流动速率(MFR)增大;FA/HDPE复合材料的初始分解温度、残留质量降低;HDPE基体的结晶度增大。  相似文献   

11.
采用双螺杆挤出机制备了一系列的高密度聚乙烯(PE–HD)/木粉(WF)和PE–HD/秸秆粉(SF)复合材料,研究了马来酸酐接枝聚乙烯(PE-g-MAH)及丙烯酸酯接枝聚乙烯(PE-g-AE)的用量对复合材料的拉伸性能、冲击性能和熔体流动速率(MFR)的影响,并对PE–HD/WF与PE–HD/SF复合材料的性能进行了比较。结果表明,PEg-MAH和PE-g-AE均可增韧PE–HD/WF和PE–HD/SF复合材料,PE-g-AE的增韧效果总体上优于PE-g-MAH;PE-g-MAH和PE-g-AE降低了PE–HD/WF复合材料的拉伸强度,但对PE–HD/SF复合材料有一定的增强作用;PE-g-MAH和PE-g-AE可在一定程度上提高PE–HD/WF复合材料的MFR,而PE–HD/SF复合材料的MFR总体上随PE-g-AE用量增加而增大,随PE-g-MAH用量增加而减小;在PE-g-AE作用下,除拉伸强度外,PE–HD/SF复合材料的冲击强度、断裂伸长率、MFR总体上均高于PE–HD/WF复合材料;当PE-g-AE的用量为其与PE–HD总质量的5%时,PE–HD/SF复合材料的综合性能最佳。  相似文献   

12.
以高密度聚乙烯为基础树脂,加入硫酸钙晶须、抗氧剂1010、硬脂酸润滑剂,制备了高密度聚乙烯/硫酸钙晶须复合材料。通过研究各组分对高密度聚乙烯/硫酸钙晶须复合材料性能的影响,确立了高密度聚乙烯/硫酸钙晶须复合材料的配方:高密度聚乙烯为100.0 phr,硫酸钙晶须为10.0 phr,抗氧剂1010为1.0 phr,硬脂酸为1.5 phr。所制高密度聚乙烯/硫酸钙晶须复合材料的缺口冲击强度为39.8 kJ/m2,拉伸强度为16.3 MPa,断裂拉伸应变为158%,熔体流动速率为8.18 g/10 min。  相似文献   

13.
以某轻型货车用板簧为研究对象,以玄武岩纤维增强环氧树脂基复合材料代替弹簧钢减轻车辆板簧质量为目的,通过材料优化设计、结构优化设计,确定了复合材料设计方案,利用ANSYS仿真设计软件对复合材料板簧进行了力学性能分析,采用树脂传递模塑(RTM)制备工艺制备了玄武岩增强复合材料板簧。结果表明,优化后的玄武岩纤维增强复合材料板簧静态强度、动态疲劳寿命能够满足设计和使用要求,通过了静载和台架疲劳试验,且质量相对于弹簧钢板簧减重55%。  相似文献   

14.
SCM晶须/高密度聚乙烯复合材料力学性能的研究   总被引:2,自引:0,他引:2  
王曦  刘军  白兰英 《塑料工业》2004,32(7):51-53
研究了硅钙镁晶须(SCM晶须)/高密度聚乙烯(HDPE)复合材料的力学性能。实验结果表明:随着SCM晶须用量的增加,复合材料的拉伸强度、弯曲强度、弯曲模量显著提高而缺口冲击强度稍有降低;利用改性聚乙烯作增容剂,可以改善基体树脂与SCM晶须的界面结合性,有助于力学性能的提高。  相似文献   

15.
本文通过熔融共混方法制备高密度聚乙烯(HDPE)/竹粉/玄武岩纤维(FB)共混物,研究了竹粉和玄武岩纤维对HDPE的拉伸强度、弯曲强度、冲击强度和耐热性能的影响;结果表明,加入竹粉,HDPE/竹粉复合材料的拉伸强度和冲击强度显著下降,但是弯曲强度有所上升,材料显脆性;但是当玄武岩纤维部分取代竹粉后,HDPE/竹粉/玄武岩纤维复合材料的拉伸强度、弯曲强度和冲击强度得到大幅度增加,体现较好的协同效应;结果证实玄武岩纤维是木塑/竹塑复合材料较好的增强增韧纤维材料。  相似文献   

16.
制备了玄武岩纤维/玻璃纤维/天然橡胶复合材料,考察了纤维层数、纤维取向、天然橡胶的用量和硅烷偶联剂种类对复合材料性能的影响。结果表明,当玄武岩纤维和玻璃纤维以45°交叉摆放2层、天然橡胶的加入量为50份,采用KH 590作偶联剂时,复合材料的力学性能最佳。与硅烷偶联剂KH 550和Si 69相比,采用KH 590作偶联剂时复合材料的力学性能和热稳定性更好。  相似文献   

17.
用溶液插层制备的马来酸酐接枝聚乙烯/膨胀石墨(EG)(60/40)作为EG母料,以不同用量、方法或条件与PE-HD熔融共混后模压为板材,研究了复合材料的加工-结构-性能关系。结果表明:熔体捏合或挤出时物料受剪切程度越小,材料中EG粒子的尺寸、形状比越大,粒子内部EG-聚合物复合结构的规整性也越好,材料的导电逾渗阈值就越低,定EG含量下的电导率σ就越高而拉伸强度(σt)越低。  相似文献   

18.
以聚丙烯(PP)/高密度聚乙烯(HDPE)共混物为基体,六方氮化硼(h-BN)为导热填料,聚丙烯接枝马来酸酐(PP-g-MAH)为相容剂,通过熔融共混法制备PP/HDPE/h-BN和PP/HDPE/h-BN/PP-g-MAH导热复合材料。采用导热系数仪、场发射扫描电镜、万能试验机、热分析仪等测试导热复合材料,研究不同含量的h-BN、PP-g-MAH对复合材料导热性、力学性能、结晶性能和耐热性的影响。结果表明:随着h-BN含量的增加,PP/HDPE/h-BN复合材料的弯曲强度、热导率和耐热性提高。当h-BN含量为20%,复合材料的弯曲强度达到41.02 MPa;当h-BN含量为25%,复合材料热导率达到0.372 1 W/(m·K)。h-BN对PP的结晶具有促进作用,提升PP的结晶速率和结晶温度。PP、HDPE与h-BN质量比为64∶16∶15时,添加5%的PP-g-MAH,增强了h-BN和基体材料的界面相容性,复合材料的弯曲强度达到42.72 MPa,拉伸强度达到26.64 MPa,热导率达到0.356 1 W/(m·K)。  相似文献   

19.
20.
以高密度聚乙烯(PE—HD)为基体材料,选用四种不同粒径的石墨作为导电填充物探讨石墨粒径对复合体系PTC效应的影响,研究了石墨用量、增塑剂添加量和成核剂添加量对高密度聚乙烯佰墨复合体系电学性能及力学性能的影响。结果表明:选用50μm的石墨颗粒作为导电添加剂可以得到具有明显PTC强度的复合材料;正交实验最优化配比为高密度聚乙烯100g,石墨60g,邻苯二甲酸二辛酯25g,滑石粉12g;制备的复合材料弯曲强度为3.5MPa,PTC强度为6.4,与PE-HD/石墨复合材料相比弯曲强度减少了2/3,脆性明显下降,同时保持了较高的PTC强度,具有良好的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号