首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new anionic gold dithiolene complex NBu4·[1] is synthesized from the (1‐((1,1‐biphenyl)‐4‐yl‐)‐ethylene‐1,2‐dithiolene ligand 1, and the cis and trans isomers are separated by recrystallization. The trans isomer is oxidized via electrocrystallisation to the neutral gold dithiolene complex 2. Complex 2 crystalizes in 1D chains, held together by short (3.30–3.37 Å) S–S contacts, which are packed in a herringbone arrangement in the ab‐plane. The complex exhibits semiconductor behavior (σRT = 1.5 × 10?4 S cm?1) at room temperature with a small activation energy (Ea = 0.11 eV), with greater conductivity along the stacking direction. The charge transport behavior of complex 2 is further investigated in single‐crystal field‐effect transistor (FET) measurements, the first such measurements reported for gold dithiolene complexes. Complex 2 shows incredibly balanced ambipolar behavior in the single‐crystal field‐effect transistor (SC‐FET), with high charge‐carrier mobilities of 0.078 cm2 V?1 s?1, the highest ambipolar mobilities reported for metal dithiolene complexes. This well‐balanced behavior, along with the activated conductivity and band structure calculations, suggests that 2 behaves as a Mott insulator. The magnetic properties are also studied by superconducting quantum interference device (SQUID) magnetometry and solid state 1H NMR, with evidence of a nonmagnetic ground state at low temperature.  相似文献   

2.
Starting from the first organic spin ladder reported, a dithiophene‐tetrathiafulvalene salt ((DT‐TTF)2[Au(mnt)2]) (mnt = maleonitriledithiolate), two different approaches to enlarge the family of organic spin‐ladder systems are described. The first approach consists of a molecular variation of the donor; to that purpose, the new TTF derivative ethylenethiothiophene‐tetrathiafulvalene (ETT‐TTF, 3 ), is synthesized and structurally characterized. From this donor a new ladder‐like structure compound, (ETT‐TTF)2[Au(mnt)2] ( 4 ), isostructural with (DT‐TTF)2[Au(mnt)2], is obtained. However, the magnetic properties of 4 do not follow the known spin‐ladder behavior owing to orientational disorder exhibited by the ETT‐TTF molecules in the crystal structure. In the second approach, the acceptor complex is changed, either in the nature of the ligand or in the metal. With the [Au(i‐mnt)2] salt (i‐mnt = iso‐maleonitriledithiolate), the new ladder‐like compound (DT‐TTF)2[Au(i‐mnt)2] ( 5 ), isostructural with 4 , is obtained, but only as a minority product. Two other compounds with a different anion generated in situ, bearing a Au(I ) dimeric core, were also isolated; (DT‐TTF)9[Au2(i‐mnt)2]2 ( 6 ) as the most abundant phase and (DT‐TTF)2[Au2(i‐mnt)2] ( 7 ) as another minority phase. Salt 7 is characterized by X‐ray crystallography as a chiral compound, due to the torsion of the ligands around the central Au–Au bond. The magnetic properties of (DT‐TTF)2[Au(i‐mnt)2] ( 5 ) indicate that it follows a spin‐ladder behavior and the electron paramagnetic resonance (EPR) data is fitted to the Troyer and Barnes and Riera equations with the parameters Δ/kB = 71 K, J/kB = 86 K, and J?/kB = 142 K, indicating a J?/J ratio of 1.65. The change of the gold complex [Au(mnt)2] for its copper analogue, [Cu(mnt)2] also leads to a ladder‐like structure, (DT‐TTF)2[Cu(mnt)2] ( 8 ), which is isostructural with the gold analogue and with salts 4 and 5. The fully ionic salt (DT‐TTF)[Cu(mnt)2] ( 9 ) is also obtained. The magnetic properties demonstrated that compound 8 is the third organic spin‐ladder system of this family, and the values found by a fitting to the ladder equations were Δ/kB = 123 K, J/kB = 121 K, and J?/kB = 218 K, corresponding to a J?/J ratio of 1.75, similar to that of 5 and close to that of an ideal spin ladder.  相似文献   

3.
Bis‐tridentate Ir(III) metal complexes are expected to show great potential in organic light‐emitting diode (OLED) applications due to the anticipated, superb chemical and photochemical stability. Unfortunately, their exploitation has long been hampered by lack of adequate methodology and with inferior synthetic yields. This hurdle can be overcome by design of the first homoleptic, bis‐tridentate Ir(III) complex [Ir(pzpyph)(pzHpyph)] ( 1 ), for which the abbreviation (pzpyph)H (or pzHpyph) stands for the parent 2‐pyrazolyl‐6‐phenyl pyridine chelate. After that, methylation and double methylation of 1 afford the charge‐neutral Ir(III) complex [Ir(pzpyph)(pzMepyph)] ( 2 ) and cationic complex [Ir(pzMepyph)2][PF6] ( 3 ), while deprotonation of 1 gives formation of anionic [Ir(pzpyph)2][NBu4] ( 4 ), all in high yields. These bis‐tridentate Ir(III) complexes 2 – 4 are highly emitted in solution and solid states, while the charge‐neutral 2 and corresponding t ‐butyl substituted derivative [Ir(pzpyBuph)(pzMepyBuph)] ( 5 ) exhibit superior photostability versus the tris‐bidentate references [Ir(ppy)2(acac)] and [Ir(ppy)3] in toluene under argon, making them ideal OLED emitters. For the track record, phosphor 5 gives very small efficiency roll‐off and excellent overall efficiencies of 20.7%, 66.8 cd A?1, and 52.8 lm W?1 at high brightness of 1000 cd m?2. These results are expected to inspire further studies on the bis‐tridentate Ir(III) complexes, which are judged to be more stable than their tris‐bidentate counterparts from the entropic point of view.  相似文献   

4.
Four (BEDT‐TTF)4A[M(C2O4)3]·DMF (DMF = dimethylformamide) salts of the organic donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT‐TTF) with metal oxalate anions, where A = (NH4, K), M = Cr ( 1 ); A = NH4, M = Fe ( 2 ); A = K, M = Cr ( 3 ); and A = NH4, M = Cr ( 3′ ) were prepared by electrocrystallization. These salts were characterized by single‐crystal X‐ray diffraction, electron spin resonance (ESR) spectroscopy, electrical resistance measurements, and electronic band structure calculations. The structures (with space group C2/c) consist of alternating β″‐type layers of BEDT‐TTF and an approximately hexagonal network formed by the A+ cation and the metal, with the solvent molecule, DMF, occupying hexagonal cavities in the anion layer. All of the salts are two‐dimensional organic metals down to 4.2 K and do not exhibit superconductivity. Their electronic band structure is similar to that of the known organic superconductor β″‐(BEDT‐TTF)4H3O[Fe(C2O4)3]·BN. The ESR spectra of salts 1 and 3′ are characterized by two resonances, one of Gaussian shape arising from the 3d localized electrons of Cr3+ and the other of Lorentzian (and Dysonian) shape due to the conduction electrons in the organic layers. On the basis of the calculated Fermi surfaces it is suggested that these salts could exhibit an interesting magnetoresistance behavior if disorder does not prevent the observation of the Shubnikov‐de Haas oscillations.  相似文献   

5.
Cationic Au4Ag2 heterohexanuclear aromatic acetylides cluster complexes supported by bis(2‐diphenylphosphinoethyl)phenylphosphine (dpep) are prepared. The Au4Ag2 cluster structure originating from the combination of one anionic [Au(C≡CR)2]? with one cationic [Au3Ag2(dpep)2(C≡CR)2]3+ through the formation of Ag?acetylide η2‐bonds is highly stabilized by Au–Ag and Au–Au contacts. The Au4Ag2 alkynyl cluster complexes are moderately phosphorescent in the fluid CH2Cl2 solution, but exhibit highly intense phosphorescent emission in solid state and film. As revealed by theoretical computational studies, the phosphorescence is ascribable to significant 3[π (aromatic acetylide) → s/p (Au)] 3LMCT parentage with a noticeable Au4Ag2 cluster centered 3[d → s/p] triplet state. Taking advantage of mCP and OXD‐7 as a mixed host with 20 wt% dopant of phosphorescent Au4Ag2 cluster complex in the emitting layer, solution‐processed organic light‐emitting diodes (OLEDs) exhibit highly efficient electrophosphorescence with the maximum current, power, and external quantum efficiencies of 24.1 cd A?1, 11.6 lm W?1, and 7.0%, respectively. Introducing copper(I) thiocyanate (CuSCN) as a hole‐transporting layer onto the PEDOT:PSS hole‐injecting layer through the orthogonal solution process induces an obvious improvement of the device performance with lower turn‐on voltage and higher electroluminescent efficiency.  相似文献   

6.
With Ni/Au and Pd/Au metal schemes and low temperature processing, we formed low resistance stable Ohmic contacts to p‐type GaN. Our investigation was preceded by conventional cleaning, followed by treatment in boiling HNO3:HCl (1:3). Metallization was by thermally evaporating 30 nm Ni/15 nm Au or 25 nm Pd/15 nm Au. After heat treatment in O2 + N2 at various temperatures, the contacts were subsequently cooled in liquid nitrogen. Cryogenic cooling following heat treatment at 600 ·C decreased the specific contact resistance from 9.84·10?4 Ωcm2 to 2.65·10?4 Ωcm2 for the Ni/Au contacts, while this increased it from 1.80·10?4 Ωcm2 to 3.34·10?4 Ωcm2 for the Pd/Au contacts. The Ni/Au contacts showed slightly higher specific contact resistance than the Pd/Au contacts, although they were more stable than the Pd contacts. X‐ray photoelectron spectroscopy depth profiling showed the Ni contacts to be NiO followed by Au at the interface for the Ni/Au contacts, whereas the Pd/Au contacts exhibited a Pd:Au solid solution. The contacts quenched in liquid nitrogen following sintering were much more uniform under atomic force microscopy examination and gave a 3 times lower contact resistance with the Ni/Au design. Current‐voltage‐temperature analysis revealed that conduction was predominantly by thermionic field emission.  相似文献   

7.
The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2 V?1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.  相似文献   

8.
A flexible low‐density metallic material, which is extremely transparent, was obtained using as active component the highly conducting molecular metal θ‐(BET‐TTF)2Br·3H2O, BET‐TTF = bis(ethylenethio)tetrathiafulvalene. This material is a bilayer (BL) film that was prepared by treating a polycarbonate film containing 2 wt.‐% of molecularly dispersed BET‐TTF with vapor of a Br2/CH2Cl2 solution. Optimum conditions for the preparation of very transparent metallic materials were established. The X‐ray diffraction patterns indicate that the conducting layer of the BL films is formed by well a* oriented θ‐(BET‐TTF)2Br·3H2O nanocrystals, which are clearly observed in the SEM images. Conductivity measurements confirm that the nanocrystalline layers have the same transport properties as those of the single crystals, displaying metal‐like behavior down to He temperature and the highest room temperature conductivity (120 Ω–1 cm–1) reported so far for this kind of film.  相似文献   

9.
A new series of charge‐neutral Ru(II ) pyridyl and isoquinoline pyrazolate complexes, [Ru(bppz)2(PPh2Me)2] (bbpz: 3‐tert‐butyl‐5‐pyridyl pyrazolate) ( 1 ), [Ru(fppz)2(PPh2Me)2] (fppz: 3‐trifluoromethyl‐5‐pyridyl pyrazolate) ( 2 ), [Ru(ibpz)2(PPhMe2)2] (ibpz: 3‐tert‐butyl‐5‐(1‐isoquinolyl) pyrazolate) ( 3 ), [Ru(ibpz)2(PPh2Me)2] ( 4 ), [Ru(ifpz)2(PPh2Me)2] (ifpz: 3‐trifluoromethyl‐5‐(1‐isoquinolyl) pyrazolate) ( 5 ), [Ru(ibpz)2(dpp?)] (dpp? represents cis‐1,2‐bis‐(diphenylphosphino)ethene) ( 6 ), and [Ru(ifpz)2(dpp?)] ( 7 ), have been synthesized, and their structural, electrochemical, and photophysical properties have been characterized. A comprehensive time‐dependant density functional theory (TDDFT) approach has been used to assign the observed electronic transitions to specific frontier orbital configurations. A multilayer organic light‐emitting device (OLED) using 24 wt % of 5 as the dopant emitter in a 4,4′‐N,N′‐dicarbazolyl‐1,1′‐biphenyl (CBP) host with 4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB) as the hole‐transport layer exhibits saturated red emission with an external quantum efficiency (EQE) of 5.10 %, luminous efficiency of 5.74 cd A–1, and power efficiency of 2.62 lm W–1. The incorporation of a thin layer of poly(styrene sulfonate)‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT) between indium tin oxide (ITO) and NPB gave anoptimized device with an EQE of 7.03 %, luminous efficiency of 8.02 cd A–1, and power efficiency of 2.74 lm W–1 at 20 mA cm–2. These values represent a breakthrough in the field of OLEDs using less expensive Ru(II ) metal complexes. The nonionic nature of the complexes as well as their high emission quantum efficiencies and short radiative lifetimes are believed to be the key factors enabling this unprecedented achievement. The prospects for color tuning based on Ru(II ) complexes are also discussed in light of some theoretical calculations.  相似文献   

10.
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV.  相似文献   

11.
The synthesis of a novel 3,3′‐difluoro‐4,4′‐dihexadecyl‐2,2′‐bithiophene monomer and its copolymerization with thieno[3,2‐b]thiophene to afford the fluorinated analogue of the well‐known poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]‐thiophene) (PBTTT) polymer is reported. Fluorination is found to have a significant influence on the physical properties of the polymer, enhancing aggregation in solution and increasing melting point by over 100 °C compared to nonfluorinated polymer. On the basis of DFT calculations these observations are attributed to inter and intramolecular S…F interactions. As a consequence, the fluorinated polymer PFBTTT exhibits a fourfold increase in charge carrier mobility compared to the nonfluorinated polymer and excellent ambient stability for a nonencapsulated transistor device.  相似文献   

12.
The unique electro‐optical features of organic photovoltaics (OPVs) have led to their use in applications that focus on indoor energy harvesters. Various adoptable photoactive materials with distinct spectral absorption windows offer enormous potential for their use under various indoor light sources. An in‐depth study on the performance optimization of indoor OPVs is conducted using various photoactive materials with different spectral absorption ranges. Among the materials, the fluorinated phenylene‐alkoxybenzothiadiazole‐based wide bandgap polymer—poly[(5,6‐bis(2‐hexyldecyloxy)benzo[c][1,2,5]thiadiazole‐4,7‐diyl)‐alt‐(5,50‐(2,5‐difluoro‐1,4‐phenylene)bis(thiophen‐2‐yl))] (PDTBTBz‐2Fanti)‐contained photoactive layer—exhibits a superior spectrum matching with indoor lights, particularly a light‐emitting diode (LED), which results in an excellent power absorption ratio. These optical properties contribute to the state‐of‐the‐art performance of the PDTBTBz‐2Fanti:[6,6]‐phenyl‐C71 butyric acid methyl ester (PC71BM)‐based OPV with an unprecedented high power‐conversion efficiency (PCE) of 23.1% under a 1000 lx LED. Finally, its indoor photovoltaic performance is observed to be better than that of an interdigitated‐back‐contact‐based silicon photovoltaic (PCE of 16.3%).  相似文献   

13.
The synthesis of the organometallic d2 [Cp*W(dmit)2]1– complex (where Cp* is pentamethylcyclopentadienyl and dmit is 1,3‐dithiole‐2‐thione‐4,5‐dithiolate), and its oxidation to the paramagnetic d1 [Cp*W(dmit)2] species, is described and their X‐ray crystal structures given. Geometrical evolutions upon oxidation, characterized by a variable folding of the WS2C2 metallacycles along the S–S hinge, are rationalized by density functional theory (DFT) calculations and by comparison with the molybdenum analogs; as is also the evolution in the UV‐vis‐NIR absorption spectra. In solution, only the d1 complexes exhibit positive optical density variations in transitory nanosecond spectroscopy after 10 ns laser pulses. A weak optical limiting effect was observed on these d1 species, stronger in the W than in the Mo complex. In the solid state, the interacting, paramagnetic [Cp*W(dmit)2] species (θCurie–Weiss = –20 K) orders antiferromagnetically below TNéel = 4.5 K with a spin‐flop field, BSF(W) of 8000 G. Compared with the molybdenum analog, the weaker θCurie–Weiss(W) and TNéel(W) values, and larger BSF(W) values reflect weaker intermolecular interactions due to a decreased spin density on the dithiolene ligands and stronger spin–orbit coupling with the W atom, as confirmed by DFT calculations on the d2 and d1 Mo and W complexes.  相似文献   

14.
We report the synthesis and excellent two‐photon‐sensitized luminescence properties of a new complex [Eu(tta)3dmbpt] (tta = henoyltrifluoroacetonate; dmbpt = 2‐(N,N‐diethyl‐2,6‐dimethylanilin‐4‐yl)‐4,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,3,5‐triazine) that exhibits the highest efficiency of lanthanide luminescence when excited by near‐infrared (NIR) laser pulses (action cross section of two‐photon‐excited fluorescence δ × ΦF: 85 GM at 812 nm and 56 GM at 842 nm; 1 GM = 10–50 cm4 s photon–1 molecule–1). Compared to a previously reported [Eu(tta)3dpbt] complex, (dpbt = 2‐(N,N‐diethylanilin‐4‐yl)‐4,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,3,5‐triazine), [Eu(tta)3dmbpt] has two excess methyl groups at the 2,6‐positions of the phenyl ring. Crystallographic data of dmbpt show that the 2,6‐dimethyl substitutes bring about a significant twist in the conformation of the diethylamino group compared to that in dpbt, which severely influences the conjugation in the ground state between the electron lone pair of N in the –N(CH2–)2 moiety and the aromatic electron system in dmbpt. The large two‐photon absorption (TPA) cross section of dmbpt is mainly derived from its large static dipole moment difference between the S0 and the S1 states, which is partly responsible for the high capability of two‐photon‐sensitized luminescence of [Eu(tta)3dmbpt]. The broader two‐ and single‐photon excitation windows and the superior two‐photon‐sensitized luminescent properties in the long‐wavelength NIR region of [Eu(tta)3dmbpt] compared to [Eu(tta)3dpbt] are also explained according to the calculated results and twisted structure.  相似文献   

15.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

16.
The electropolymerization of thioaniline‐modified Au nanoparticles (NPs) on thioaniline monolayer‐functionalized electrodes in the presence of Zn(II)‐protoporphyrin IX yields bis aniline‐crosslinked Au NPs matrices that include molecular imprinted sites for binding the Zn(II)‐protoporphyrin IX photosensitizer. The binding of the photosensitizer yields photoelectrochemically active electrodes that produce anodic photocurrents in the presence of the electron donor benzohydroquinone. The efficient photocurrents formed in the presence of the imprinted electrode are attributed to the high‐affinity binding of the photosensitizer to the imprinted sites, Ka = 3.2 × 106 m ?1, and to the effective transport of the photoejected electrons to the bulk electrode via the bridged Au NPs matrix. Similarly, a N,N′‐dialkyl‐4,4′‐bipyridinium‐modified Zn(II)‐protoporphyrin IX photosensitizer‐electron acceptor dyad is imprinted in the bis aniline‐crosslinked Au NPs matrix. The photocurrent generated by the imprinted matrix is approximately twofold higher as compared to the photocurrent generated by the Zn(II)‐protoporphyrin IX‐imprinted Au NPs matrix. The efficient photocurrents generated in the presence of the bipyridinium‐modified Zn(II)‐protoporphyrin IX‐imprinted matrix are attributed to the effective primary charge separation of the electron–hole species in the dyad structure, followed by the effective transport of the photoejected electrons to the electrode via the bis aniline‐crosslinked Au NPs matrix.  相似文献   

17.
A novel red phosphorescent iridium complex containing a carbazole‐functionalized β‐diketonate, Ir(DBQ)2(CBDK) (bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate)) is designed, synthesized, and characterized. The electrophosphorescence properties of a nondoped device using the title complex as an emitter with a device configuration of indium tin oxide (ITO)/N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐diphenyl‐4,4′‐diamine (NPB; 20 nm)/iridium complex (20 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 5 nm)/tris(8‐hydroxyquinoline) (AlQ; 30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) are examined. The results show that the nondoped device achieves a maximum lumen efficiency as high as 3.49 lm W–1. To understand this excellent result observed, two reference complexes Ir(DBQ)2(acac), where acac is the acetyl acetonate anion, and Ir(DBQ)2(FBDK), [bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(9‐methyl‐fluoren‐9‐yl)‐6,6‐dimethylheptane‐3,5‐diketonate)], have also been synthesized, and as emitters they were examined under the same device configuration. The maximum lumen efficiency of the former compound is found to be 0.26 lm W–1 while that for the latter is 0.37 lm W–1, suggesting that the excellent performance of Ir(DBQ)2(CBDK) can be attributed mainly to an improved hole‐transporting property that benefits the exciton transport. In addition, a bulky diketonate group separates the emitter centers from each other, which is also important for organic light‐emitting diodes.  相似文献   

18.
A novel acceptor–donor–acceptor (A–D–A) type electron acceptor 6TIC‐4F with terthieno[3,2‐b]thiophene (6T) as the core unit is rationally designed and synthesized, which exhibits an extraordinarily narrow bandgap (≈1.24 eV) and strong absorption between 650 and 1000 nm. X‐ray crystallographic analysis reveals that it has unique intermolecular π–π stacking. The solar cells based on the as‐cast poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))]) (PBDB‐T): 6TIC‐4F binary blends exhibit an excellent power conversion efficiency (PCE) of 11.14% with a high JSC of 23.00 mA cm?2, and a high fill factor of 0.67, which represents one of the best PCE values for low bandgap (Eg < 1.3 eV)–based organic solar cells.  相似文献   

19.
A novel yellowish‐green triplet emitter, bis(5‐(trifluoromethyl)‐2‐p‐tolylpyridine) (acetylacetonate)iridium(III) (1), was conveniently synthesized and used in the fabrication of both monochromatic and white organic light‐emitting diodes (WOLEDs). At the optimal doping concentration, monochromatic devices based on 1 exhibit a high efficiency of 63 cd A?1 (16.3% and 36.6 lm W?1) at a luminance of 100 cd m?2. By combining 1 with a phosphorescent sky‐blue emitter, bis(3,5‐difluoro‐2‐(2‐pyridyl)phenyl)‐(2‐carboxypyridyl)iridium(III) (FIrPic), and a red emitter, bis(2‐benzo[b]thiophen‐2‐yl‐pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), the resulting electrophosphorescent WOLEDs show three evenly separated main peaks and give a high efficiency of 34.2 cd A?1 (13.2% and 18.5 lm W?1) at a luminance of 100 cd m?2. When 1 is mixed with a deep‐blue fluorescent emitter, 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl (BCzVBi), and Ir(btp)2(acac), the resulting hybrid WOLEDs demonstrate a high color‐rendering index of 91.2 and CIE coordinates of (0.32, 0.34). The efficient and highly color‐pure WOLEDs based on 1 with evenly separated red, green, blue peaks and a high color‐rendering index outperform those of the state‐of‐the‐art emitter, fac‐tris(2‐phenylpyridine)iridium(III) (Ir(ppy)3), and are ideal candidates for display and lighting applications.  相似文献   

20.
Several substituted phenanthrolines (L = pyrazino[2,3‐f][1,10]phenanthroline (PyPhen), 2‐methylpyrazino[2,3‐f][1,10]phenanthroline (MPP), dipyrido[3,2‐a:2′,3′‐c]phenazine (DPPz), 11‐methyldipyrido[3,2‐a:2′,3′‐c]phenazine (MDPz), 11,12‐dimethyldipyrido[3,2‐a:2′,3′‐c]phenazine (DDPz), and benzo[i]dipyrido[3,2‐a:2,3‐c]phenazine (BDPz)) were successfully prepared and europium complexes Eu(TTA)3L (Eu‐L) based on these ligands were synthesized from EuCl3, 2‐thenoyltrifluoroacetone (TTA) and L in good yields. Irradiation at the absorption band between 320–390 nm of all these europium complexes, except Eu‐BDPz, in solution or in the solid state leads to the emission of a sharp red band at ~ 612 nm, a characteristic Eu3+ emission due to the transition 5D07F2. No emission from the ligands was found. The result indicates that complete energy transfer from the ligand to the center Eu3+ ion occurs for these europium complexes. In contrast, the photoluminescence spectrum of Eu‐BDPz exhibits a strong emission at around 550 nm from the coordinated BDPz ligand and a weak emission at 612 nm from the central europium ion. Incomplete energy transfer from the ligand to the central Eu3+ ion was observed for the first time. Several electroluminescent devices ( A – I ) using Eu‐PyPhen, Eu‐MPP, Eu‐DPPz, and Eu‐DDPz as dopant emitters with the device configuration: TPD or NPB (50 nm)/Eu:CBP (1.7–7 %, 30 nm)/BCP (20–30 nm)/Alq (25–35 nm) (where TPD: 4,4′‐bis[N‐(p‐tolyl)‐N‐phenylamino]biphenyl; NPB: 4,4′‐bis[1‐naphthylphenylamino]biphenyl; CBP: 4,4′‐N,N′‐dicarbazole biphenyl; BCP: 2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline; Alq: tris[8‐hydroxyquinoline]aluminum) were fabricated. Some of these devices emit saturated red light and are the only europium complex‐based devices that show a brightness of more than 1000 cd m–2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号