首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对喷射成形6061铝合金的热处理工艺进行研究,采用硬度测试、拉伸试验和透射电镜等研究固溶温度、时效温度和时效保温时间对合金显微组织和力学性能的影响规律。结果表明:随固溶温度的升高,合金硬度也随之升高,而其抗拉强度、屈服强度和断后伸长率则先增大后减小;合金硬度、抗拉强度和屈服强度随时效温度的升高先增大后减小,断后伸长率却一直减小;合金硬度、抗拉强度和屈服强度曲线随时效温保温时间的延长呈驼峰状变化,断后伸长率则变化不大,只在17 h时有所增大;喷射成形6061铝合金的最佳热处理工艺为530℃固溶1 h+175℃时效8 h。  相似文献   

2.
对Y变质的铸造铝合金ZL114A进行了热处理试验。通过金相分析和拉伸试验研究了固溶温度、固溶时间、时效温度和时效时间对合金组织和力学性能的影响。结果表明:在530℃固溶处理时含0.08%Y的ZL114A合金抗拉强度随固溶时间的延长而逐渐增大,在12 h时达到最大,此时共晶硅细小圆整;伸长率先减小后增大再减小,在固溶时间10 h时达到最大。在175℃时效处理时合金的抗拉强度随时效时间的延长先增大后趋于稳定,在时效时间7 h时达到最大值;伸长率先减小后增大再减小,在9 h时达到最大。  相似文献   

3.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

4.
采用不同的固溶温度、固溶时间、时效温度和时效时间对汽车空调新型铝合金Al-Si-Cu-Mg-Ti-In进行了热处理,并进行了试样拉伸性能和耐磨损性能的测试与分析。结果表明:在试验条件下,随固溶温度从500℃增加到530℃,固溶时间从4 h增加到12 h,时效温度从160℃提高到190℃,或时效时间从5 h提高到9 h,该合金的抗拉强度均先增大后减小,磨损体积先减小后增大,拉伸性能和耐磨损性能均先提高后下降。合金的固溶温度、固溶时间和时效温度、时效时间分别优选为525℃、10 h和185℃、8 h。  相似文献   

5.
采用CMT5105电子万能试验机、HB-3000B型布氏硬度计和S-4800型高分辨率场发射扫描电子显微镜,研究了固溶和时效热处理对6061铝合金轮毂组织和力学性能的影响。结果表明,在相同固溶和时效温度条件下,6061铝合金轮毂的屈服强度、抗拉强度、伸长率和硬度随时效时间的增加先增大然后降低;6061铝合金轮毂最优的热处理工艺为540℃/100 min固溶处理和177℃/300 min时效处理;在该热处理条件下,6061铝合金轮毂的屈服强度、抗拉强度、伸长率和硬度的平均值分别为327.5 MPa、375.0 MPa、12.2%和128.8 N/mm~2。  相似文献   

6.
研究了固溶温度、时效时间、时效温度对Al-Cu-Mn铸造铝合金微观组织和力学性能的影响。结果表明,合金经过530℃×14 h固溶处理后,晶界残留相最少;时效温度为170℃时,合金的硬度(HBW)随时效时间延长先增大后减小,在6h时达到峰值(145);在不同温度下时效6 h后,合金的抗拉强度、硬度(HBW)随时效温度的上升先增大后减小,均在170℃时达到峰值,为480 MPa和145,伸长率随时效温度的升高而迅速下降。  相似文献   

7.
GW01铝合金是在6061铝合金基础上研发的一种新型高强铝合金。采用三因素三水平的正交实验,研究了固溶温度-时间、时效温度、时效时间三因素对GW01铝合金T6处理后力学性能的影响规律。结果表明:随着固溶温度的提高和固溶时间的缩短,GW01铝合金的抗拉强度、屈服强度和硬度均有大幅度提高,其伸长率则先降低后升高;随着时效温度的升高,GW01铝合金的抗拉强度、屈服强度、硬度以及伸长率均不断降低;GW01铝合金的抗拉强度、屈服强度以及硬度均对时效时间不敏感,随时效时间的延长只有小幅度的降低,其伸长率则随时效时间的延长有一定幅度的提高。(510℃,3 h,水淬)+(170℃,18 h,空冷)的T6热处理可以使GW01铝合金管材获得良好的综合力学性能。  相似文献   

8.
研究了固溶及时效处理对La变质4004铝合金组织及性能的影响。结果表明:随着固溶温度的升高、固溶时间的延长,合金中共晶硅熔断并粒化,500℃固溶6 h时性能达到最佳;随着时效温度的升高、时效时间的延长,合金硬度先升高后降低,时效温度为200℃、时效时间6 h时其硬度达到最高值112 HBW。变质4004铝合金最佳热处理工艺为:500℃×6 h固溶+200℃×6 h时效。  相似文献   

9.
采用光学显微镜、扫描电镜和拉伸试验等方法,研究了固溶处理工艺对6061铝合金微观组织和力学性能的影响。结果表明,随固溶时间的延长和固溶温度的升高,合金中可溶第二相粒子逐渐溶解,再结晶增强,晶粒细化,合金拉伸性能升高;进一步延长固溶时间和提高固溶温度,合金晶粒粗化,合金强度下降。热处理后残留粗大第二相粒子的多少和合金晶粒大小是影响合金拉伸性能和断口形貌的主要因素。时效工艺为180 ℃×8 h条件下,6061铝合金的最佳固溶工艺为535 ℃×80 min。  相似文献   

10.
采用不同的固溶温度、固溶时间、时效温度和时效时间对7075铝合金板材搅拌摩擦焊接接头进行了热处理,并分析了固溶时效工艺对焊接接头疲劳性能的影响规律。结果表明,随固溶温度从420℃提高至480℃,固溶时间从1h延长至4 h,或时效温度从90℃增加至130℃,焊接接头的疲劳性能先提高后下降;随时效时间从12 h延长至36 h,焊接接头的疲劳性能先提高后基本不变。固溶时效能使焊接接头的疲劳性能从母材的80%提高至母材的98%。焊接接头适宜的固溶时效工艺:固溶温度为470℃、固溶时间为3 h、时效温度为120℃、时效时间为24 h。  相似文献   

11.
研究了固溶和时效热处理对挤压铸造6063铝合金显微组织和力学性能的影响,并分析了热处理工艺参数的影响机理。结果表明,随着固溶时间从15 min增加至120 min,6063铝合金中晶粒尺寸不断变大,晶界和晶内Mg_2Si相逐渐消失并回溶至基体,而固溶时间对α-Al_8Fe_2Si和β-Al_5FeSi相影响较小,合金的强度和硬度则表现为先增大后减小,伸长率表现为先减小后增大的特征;当时效温度从160℃增加至180℃,6063铝合金中第二相逐渐增多,而时效温度为200℃时合金中第二相会发生粗化,6063铝合金的强度和硬度会随着时效温度升高而先增加后减小,伸长率则随着时效温度升高先减小后增大;时效时间在3 h及以下时,6063铝合金中次生第二相数量较少,当时效时间增加至5 h时,弥散分布的第二相会逐渐增多,在时效时间达到12 h及以上时第二相发生明显粗化与长大;6063铝合金适宜的热处理制度为535℃×60 min+180℃×7 h,此时6063铝合金具有最大的强度、硬度以及较高的伸长率。  相似文献   

12.
通过6061铝合金末端淬火测得的冷却曲线,结合有限差分法和反传热求解法,研究了6061合金固溶处理在不同冷却方式下的冷速及表面换热系数与温度的变化规律。结果表明,6061铝合金在水雾冷和喷水冷却过程中,端面冷速先增大后减小,在400℃左右达到峰值,峰值冷速约为30℃/s。6061铝合金的表面换热系数与温度呈非线性关系,其大小随着温度的降低先逐渐增大,在150~100℃范围内达最大值,然后下降;在风冷过程中,表面换热系数值先急剧增大,当温度下降到500℃后增速明显减慢。  相似文献   

13.
采用正交试验法研究了双级固溶温度和时间对Al-5. 8Zn-2. 7Mg-1. 6Cu铝合金的显微组织、硬度、电导率、室温拉伸性能和慢应变速率拉伸性能的影响。结果表明,对Al-5. 8Zn-2. 7Mg-1. 6Cu铝合金硬度影响最显著的因素为二级固溶温度和二级固溶时间,当二级固溶温度一定时,随着二级固溶时间的延长,硬度先增大后减小;当二级固溶时间一定时,随着二级固溶温度的增大,硬度逐渐增大。对电导率影响最显著的因素为一级固溶温度和一级固溶时间,当一级固溶温度一定时,随着一级固溶时间的延长,电导率先增大后减小;当一级固溶时间一定时,随着一级固溶温度的增加,电导率逐渐增大。对抗拉强度影响最显著的因素为一级固溶温度和二级固溶时间,当一级固溶温度一定时,随着二级固溶时间的延长,抗拉强度逐渐增大;当二级固溶时间一定时,随着一级固溶温度的增大,抗拉强度先减小后增大。对抗应力腐蚀性能影响最显著的因素是一级固溶时间和二级固溶时间。对硬度、电导率、抗拉强度、抗应力腐蚀性能较有利的双级固溶工艺分别为460℃×120 min+475℃×40 min、450℃×90 min+475℃×40 min、440℃×90 min+470℃×50 min、450℃×120 min+470℃×40 min。  相似文献   

14.
在自制试验模具上进行了7A04铝合金的弯曲蠕变时效试验,通过光学显微镜、扫描电镜、万能拉伸试验机、显微硬度仪等方法研究了二次固溶时效工艺对7A04-T6铝合金蠕变时效效应的影响。结果表明:提高二次固溶温度或延长固溶时间,均能显著改善7A04-T6铝合金板材后续蠕变时效的强度,但固溶温度过高或时间过长将损害合金的抗拉强度。随着固溶温度的提高,合金显微硬度变化趋势由随固溶时间延长而逐渐减小向随固溶时间延长先增加后趋于平稳转变。而固溶时间相同时,合金显微硬度均随着二次固溶温度的提高而逐渐提高。二次固溶时间和固溶温度对合金蠕变时效后回弹率的影响趋于一致,较高温度且保温较长时间有利于获得回弹率较低的铝合金构件。  相似文献   

15.
通过控制固溶和时效温度,用金相显微镜进行组织观察、维氏硬度测试仪进行硬度检测,冲击试验考察冲击韧性,探讨了热处理工艺对6061铝合金显微组织与力学性能的影响。结果表明,6061铝合金经过固溶时效后,强韧性得到明显提高。综合比较得到,6061铝合金在535℃固溶保温4 h,随后180℃时效3 h,获得的组织和性能较好。  相似文献   

16.
采用氟盐法制备了TiB2质量分数为3%的原位合成TiB2/6061复合材料,研究了固溶温度和固溶时间对复合材料硬度和耐磨性能的影响。结果表明:TiB2颗粒弥散分布在6061铝合金基体中,明显细化6061铝合金基体晶粒。当固溶温度一定时,随固溶时间延长,复合材料的硬度和耐磨性可获得明显提高,但固溶时间在6~10 h时,复合材料的性能变化不显著。当固溶时间一定时,随固溶温度升高,复合材料硬度和耐磨性呈现先上升后下降的趋势。3wt%TiB2/6061复合材料经530 ℃×10 h固溶处理后,硬度和耐磨性能最佳,相较于铸态硬度值提高了79.5%,磨损量减少了59.1%。固溶处理后复合材料的磨损表面犁沟变细变浅,材料脱落现象减少。  相似文献   

17.
《铸造技术》2017,(6):1335-1337
研究了形变后的6082铝合金热处理工艺参数对其组织和性能的影响。结果表明:合金固溶时效后获得大量均匀分布的Mg_2Si强化相;随着固溶温度升高、固溶时间和时效时间的延长,合金时效后的硬度呈现出先升高后降低的趋势。6082铝合金较适宜的热处理工艺参数为555℃×4 h固溶水淬+175℃×10 h时效处理。  相似文献   

18.
采用金相显微镜、扫描电镜、透射电镜和拉伸试验机等手段,研究了固溶时间、时效温度和时效时间对Al-1.0Mg-0.6Si-0.25Cu合金显微组织、硬度和拉伸性能的影响。研究结果表明,固溶温度540℃、固溶保温时间60 min时,合金中黑色块状Mg2Si初生相基本回溶至基体,而继续延长保温时间,白色条状或块状Al Fe Si相不会发生明显变化,而晶粒发生粗化;随着固溶保温时间的延长,合金的抗拉强度、屈服强度和硬度都呈现先增加而后减小的特征,断后伸长率先减小而后增大;随着时效温度升高,时效时间延长,合金中细小第二相数量不断增多,晶粒有所粗化,合金的抗拉强度、屈服强度和硬度都呈现先增加而后减小的特征,断后伸长率先减小而后增大。Al-1.0Mg-0.6Si-0.25Cu合金适宜的固溶保温时间为60 min、时效温度为180℃、时效时间为7 h。  相似文献   

19.
通过试验研究了固溶温度对6061铝合金薄板试样的晶粒组织、第二相结构和力学性能的影响规律。结果表明:试样的晶粒尺寸随着固溶温度的升高呈现出先增大后减小的规律,并在540℃时达到晶粒最大尺寸;第二相元素在铝合金基体中的溶解度在固溶温度为560℃时达到最大;随着固溶温度的升高,试样的硬度呈现出了先增加后降低的趋势,并在固溶温度为560℃时试样的硬度达到最大;随着固溶温度的升高,试样的屈服强度和抗拉强度都呈现出了先升高后降低的趋势,而伸长率呈现出先降低后升高的趋势。  相似文献   

20.
采用维氏硬度计和电子显微镜等分析方法研究固溶处理及双级时效对7050铝合金微观组织和硬度的影响。结果表明,随着固溶温度的升高和固溶保温时间的延长,晶内细小的第二相和晶界粗大的第二相逐渐溶解,淬火后易形成过饱和固溶体,在随后的时效阶段不断析出形成沉淀强化相,硬度得到提高;随着预时效温度的升高和预时效保温时间的延长,第二相不断析出并趋于长大,同时再结晶体积分数不断增大;随着终时效温度的升高和终时效保温时间的延长,预时效阶段没有析出的第二相继续析出,并趋于长大,同时再结晶体积分数也不断增大,硬度先增大后降低。7050铝合金最佳的固溶工艺为470 ℃×60 min, 最佳短时双时效工艺为120 ℃×4 h+160 ℃×3 h, 此时硬度值为195.47 HV,再结晶体积分数38.22%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号