首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High molecular weight poly(diphenylacetylene) [PDPA] derivatives are introduced as fluorescent, soft conjugated polymers that exist in the gum state at room temperature. The gum‐like behavior of the polymers is easily modified according to the side alkyl chain length and substitution position. Long alkyl chain‐coupled PDPA derivatives provide soft and sticky gums at room temperature. Manual kneading of gum polymers produce soft films with very smooth surfaces. The gum polymers show an endothermic transition due to the melting of long alkyl chains. The X‐ray diffraction of gum polymers reveals a new signal due to the molten aliphatic chains. The gum polymers show significant viscoelastic relaxation at the melting temperature of the alkyl side chains. The dynamic thermo‐mechanical analysis (DTMA) of gum polymers at room temperature suggest that the meta‐substituted polymer is softer and stickier than para‐polymer. Rheological analysis suggests that the meta‐polymer has less entanglement than para‐polymer. The fluorescence emission of gum polymer is quite intense in the film and solution. The gum polymer film is readily stretched to produce a uniaxually oriented film. Stretching and subsequent relaxation of elastomer‐supported gum polymer film generate buckles perpendicular to the axis of strain. The gum polymer film accommodates the large strain without cracking and delamination.  相似文献   

2.
The solid‐state packing and polymer orientation relative to the substrate are key properties to control in order to achieve high charge carrier mobilities in organic field effect transistors (OFET). Intuitively, shorter side chains are expected to yield higher charge carrier mobilities because of a denser solid state packing motif and a higher ratio of charge transport moieties. However our findings suggest that the polymer chain orientation plays a crucial role in high‐performing diketopyrrolopyrrole‐based polymers. By synthesizing a series of DPP‐based polymers with different branched alkyl side chain lengths, it is shown that the polymer orientation depends on the branched alkyl chain lengths and that the highest carrier mobilities are obtained only if the polymer adopts a mixed face‐on/edge‐on orientation, which allows the formation of 3D carrier channels in an otherwise edge‐on‐oriented polymer chain network. Time‐of‐flight measurements performed on the various polymer films support this hypothesis by showing higher out‐of‐plane carrier mobilities for the partially face‐on‐oriented polymers. Additionally, a favorable morphology is mimicked by blending a face‐on polymer into an exclusively edge‐on oriented polymer, resulting in higher charge carrier mobilities and opening up a new avenue for the fabrication of high performing OFET devices.  相似文献   

3.
A series of alternating copolymers of cyclopenta[2,1‐b;3,4‐b′]dithiophene (CPDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) have been prepared and characterized for polymer solar cell (PSC) applications. Different alkyl side chains, including butyl (Bu), hexyl (He), octyl (Oc), and 2‐ethylhexyl (EH), are introduced to the TPD unit in order to adjust the packing of the polymer chain in the solid state, while the hexyl side chain on the CPDT unit remains unchanged to simplify discussion. The polymers in this series have a simple main chain structure and can be synthesized easily, have a narrow band gap and a broad light absorption. The different alkyl chains on the TPD unit not only significantly influence the solubility and chain packing, but also fine tune the energy levels of the polymers. The polymers with Oc or EH group have lower HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, resulting higher open circuit voltages (Voc) of the PSC devices. Power conversion efficiencies (PCEs) up to 5.5% and 6.4% are obtained from the devices of the Oc substituted polymer (PCPDTTPD‐Oc) with PC61BM and PC71BM, respectively. This side chain effect on the PSC performance is related to the formation of a fine bulk heterojunction structure of polymer and PCBM domains, as observed with atomic force microscopy.  相似文献   

4.
A series of poly(arylene piperidinium)s (PAPipQs) devoid of any alkali‐sensitive aryl ether bonds or benzylic sites are prepared and studied as anion exchange membranes (AEMs) for alkaline fuel cells. First, the excellent alkaline stability of the model compound 4,4‐diarylpiperidinium is confirmed. Medium molecular weight poly(arylene piperidine)s are then synthesized in polycondensations of N‐methyl‐4‐piperidone and either bi‐ or terphenyl via superelectrophilic activation in triflic acid. Film‐forming PAPipQs are subsequently prepared in Menshutkin reactions with methyl, butyl, hexyl, and octyl halides, respectively. AEMs based on poly(terphenyl dimethylpiperidinium) show the best performance with no structural degradation detectable by 1H NMR spectroscopy after storage in 2 m aq. NaOH at 60 °C after 15 d, and a mere 5% ionic loss at 90 °C. In the fully hydrated state these AEMs reach an OH? conductivity of 89 mS cm?1 at 80 °C. The presence of longer pendant N‐alkyl chains (butyl to octyl) is found to significantly promote Hofmann ring‐opening elimination reactions and the degradation rate increases with increasing alkyl chain length. The results of the present study demonstrate that PAPipQs are efficiently prepared from readily available monomers and show excellent alkaline stability and OH? conductivity when devoid of pendant N‐alkyl chains.  相似文献   

5.
A series of conjugated copolymers containing fluorene or indenofluorene units alternating with oligothiophene segments, with potential interest for use as the active layer in field‐effect transistors, is investigated. Atomic force microscopy analysis of the morphology of thin deposits shows either the formation of fibrillar structures, which are the signature of long‐range π stacking, or the presence of untextured aggregates, resulting from disordered assembly. These morphologies are interpreted in terms of the supramolecular organization of the conjugated chains. Molecular modeling simulations indicate that the commensurability between the lengths of the monomer units and the presence of alkyl side groups are the two key structural factors governing the chain organization into highly ordered assemblies. The most favorable structures are those combining fluorene (indenofluorene) units with unsubstituted bithiophene (terthiophene) segments.  相似文献   

6.
Optimization and analysis of conjugated polymer side chains for high‐performance organic photovoltaic cells (OPVs) reveal a critical relationship between the chemical structure of the side chains and photovoltaic properties of polymer‐based bulk heterojunction OPVs. In particular, the impact of the alkyl side chain length on the π‐bridging (thienothiophene, TT) unit is considered by designing and synthesizing a series of benzodithiophene derivatives (BDT(T)) and thieno[3,2‐b]thiophene‐π‐bridged thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (ttTPD) alternating copolymers, PBDT(T)‐(R2)ttTPD, with alkyl chains of varying length on the TT unit. Using a combination of 2D X‐ray diffraction, Raman spectroscopy, and electrical device characterization, it is elucidated in detail how these subtle changes to the chemical structure affect the molecular conformation, thin film molecular packing, blend film morphology, optoelectronic properties, and hence overall photovoltaic performance. For copolymers employing both the alkoxy or alkylthienyl‐substituted BDT motifs, it is found that octyl side chains on TT unit yield the maximum degree of molecular backbone coplanarity and result in the highest quality of molecular packing and optimized hole mobility. Inverted devices fabricated using this PBDTT‐8ttTPD: polymer/[6,6]‐phenyl‐C71‐butylic acid methyl ester active layer show a maximum power conversion efficiency (PCE) of 8.7% with large area cells (0.64 cm2) maintaining a PCE of 7.5%.  相似文献   

7.
Polymer‐fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton‐dissociation, charge‐separation, and charge‐recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side‐chains on the polymer‐fullerene packing in mixed regions. The focus is on poly‐benzo[1,2‐b:4,5‐b′]dithiophene‐thieno[3,4‐c]pyrrole‐4,6‐dione (PBDTTPD) as electron‐donating material and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as electron‐accepting material. Three polymer side‐chain patterns are considered: i) linear side‐chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side‐chains on BDT and a branched side‐chain on TPD; and iii) two branched side‐chains on BDT and a linear side‐chain on TPD. Increasing the number of branched side‐chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side‐chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton‐dissociation and charge‐recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar‐cell performance as a function of side‐chain patterns.  相似文献   

8.
A series of donor-acceptor (D-A) conjugated polymers based on benzo[1,2-b:4,5-b’]dithiophene (BDT) and isoindigo with different alkyl side chains were designed and synthesized. These polymers named PBDT-TT-IIDO, PBDT-TT-IIDEH, PBDT-TT-IIDBO, PBDT-TT-IIDHD, and PBDT-TT-IIDOD have different length or structure of the alkyl side chains on isoindigo unit. As the length of the alkyl chain increases, the solubility of the polymer enhances. The results indicate that the alkyl side chains have little effect on the optical properties of individual polymer molecules, but have a significant impact on optical, electrochemical, film-forming and photovoltaic properties of the polymers in the aggregated state. PBDT-TT-IIDHD with a sixteen carbon branched chain achieves the best power conversion efficiencies (PCEs) of 6.83% when blending with [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as acceptor. The influence of the alkyl side chain on the short-circuit current is much greater than that of the open circuit voltage. Atomic force microscopy (AFM) reveals that the side chains changed the morphology of the active layers and the size of the phase region. For isoindigo based polymers, hexyl-decyl group in the commonly used alkyl chains appear to be a good choice.  相似文献   

9.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

10.
The introduction of side chains in π‐conjugated molecules is a design strategy widely exploited to increase molecular solubility thus improving the processability, while directly influencing the self‐assembly and consequently the electrical properties of thin films. Here, a multiscale structural analysis performed by X‐ray diffraction, X‐ray reflectivity, and atomic force microscopy on thin films of dicyanoperylene molecules decorated with either linear or branched side chains is reported. The substitution with asymmetric branched alkyl chains allows obtaining, upon thermal annealing, field‐effect transistors with enhanced transport properties with respect to linear alkyl chains. Branched chains induce molecular disorder during the film growth from solution, effectively favouring 2D morphology. Post‐deposition thermal annealing leads to a structural transition towards the bulk‐phase for molecules with branched chains, still preserving the 2D morphology and allowing efficient charge transport between crystalline domains. Conversely, molecules with linear chains self‐assemble into 3D islands exhibiting the bulk‐phase structure. Upon thermal annealing, these 3D islands keep their size constant and no major changes are observed in the organic field effect transistor characteristics. These findings demonstrate that the disorder generated by the asymmetric branched chains when the molecule is physisorbed in thin film can be instrumental for enhancing charge transport via thermal annealing.  相似文献   

11.
The design of polymer semiconductors possessing effective π–π intermolecular interactions coupled with good solution processability remains a challenge. Structure‐property relationships associated with side chain structure, π–π intermolecular interactions, polymer solubility, and charge carrier transport are reported for a donor–acceptor(1)‐donor–acceptor(2) polymer: 5‐Decylheptadecyl (5‐DH), 2‐tetradecyl (2‐DT), and linear n‐octadecyl (OD) chains are substituted onto a polymer backbone consisting of terthiophene units (T) between two different electron acceptors, benzothiadiazole (B), and diketopyrrolopyrrole (D), pTBTD, to afford pTBTD‐5DH, pTBTD‐2DT, and pTBTD‐OD, respectively. In the 5‐DH side chain, the branching position is remote from the polymer backbone, whereas it is proximal in 2‐DT. This study demonstrates that incorporation of branched side chains where the branching position is remote from the polymer backbone merges the advantages of improved solubility from branched units with effective π–π intermolecular interactions normally associated with linear chains on conjugated polymers. pTBTD‐5DH exhibits superior qualities with respect to the degree of polymerization, solution processability, π–π interchain stacking, and charge carrier transport relative to the other analogs. pTBTD‐5DH exhibits a field‐effect hole mobility of up to 2.95 cm2 V–1 s–1, a factor of 3–7 times that achieved with pBDT6‐DT and pBDT6‐OD.  相似文献   

12.
A range of doubly dynamic proteoid biodynamers based on the polycondensation of various categories of amino acid hydrazides with a di‐ aldehyde have been generated through formation of two types of reversible CN bonds (imine and acylhydrazone). Their structures and properties (rates of polymerization and dynamic character) have been characterized by NMR, small‐angle neutron scattering, dynamic light scattering, and cryo‐transmission‐electron microscopy. Three types of structures (nanorods, globular nano‐objects, oligomers) are obtained at different rates after polycondensation. Competitive polymerization shows that electrostatic effects markedly influence polymerizations when two oppositely charged monomers are used, and an exchange experiment demonstrates the preferential incorporation of a specific monomer in the biodynamer chain. Taken together, all our results show that the side chains of the amino acid hydrazides have a strong influence on the rates of polymerization, structures, and dynamic properties of the resulting biodynamers. The present study provides a basis for the rational design and synthesis of various types of well‐ordered structures and adaptive materials, offering great potential for utilization in the field of biomaterials science.  相似文献   

13.
We have prepared photoresponsive oligomers that have molecular weights of ca. 4500, 8000, and 16 000 g mol–1 via the free‐radical polymerization of 4‐[4‐alkylphenylazo]phenoxyalkyl acrylates. All of the oligomers possess bilayer smectic A (SmA) and smectic B (SmB) phases. Increasing the concentration of these oligomeric dopants in a glass‐forming cholesteric liquid crystal causes a dramatic red‐shift in the reflection wavelength. The pitch shifts are very dependent on the alkyl chain lengths and molecular weights of the dopants. The oligomer that contains octyl chains and an octyl spacer, and that has a molecular weight of 4500 g mol–1 exhibits the largest shift in the reflection wavelength. UV exposure has been used to control the cholesteric reflection pitch of the oligomer‐cholesteric glassy liquid‐crystal mixture over the entire visible region of the electromagnetic spectrum and vitrifies the samples by rapid cooling from their cholesteric temperatures to 0 °C. Extremely stable, even at 70 °C, erasable, full‐color images have been created using this host–guest mixture.  相似文献   

14.
The self‐organization of organic polymer semiconductors into ordered supramolecular assemblies commensurate with efficient charge transport is achieved by tuning a range of process parameters (e.g., film deposition method (spin vs drop cast), solvent boiling point (low vs high boiling point), polymer‐dielectric interface treatment, and post‐deposition processing (solvent vapor or thermal annealing)). However, these strategies present limitations for large‐scale high‐throughput processing due to associated pre‐ and/or post semiconductor deposition steps. Here, photoinduced anisotropic supramolecular assembly of P3HT chains in solution is demonstrated. UV irradiation provides for enhanced intramolecular ordering of solubilized polymer chains, and thereby effects formation of anisotropic supramolecular polymer assemblies via favorable π–π stacking (intermolecular interaction). Molecular ordering is thus dramatically enhanced with concomitant, enhanced charge transport characteristics of corresponding films. Additional pre‐ and/or post treatments are avoided.  相似文献   

15.
Molecular design of lipophilic polyelectrolyte gels as superabsorbent polymers that exhibit a high degree of swelling in less‐polar and nonpolar organic solvents is demonstrated. A small amount of tetraalkylammonium tetraphenylborate with long alkyl chains as a lipopholic ion pair is incorporated into crosslinked polyacrylates with variable alkyl chain lengths to provide novel lipophilic polyelectrolyte gels. Their swelling degree becomes more than 100 times as much as their dried weights in various organic solvents. The high effectiveness of the swellable solvents shifts to the polar ones by decreasing the length of the alkyl chain. Swelling or collapsing of the lipophilic polyelectrolyte gels originates from both incompatibility of the polymer chains in the media and dissociation of ionic groups. Thus, a unique superabsorbency is observed when the polymer chains have good compatibility with the solvents and the solvents have relatively high polarities enough to dissociate the ionic groups. By varying the polarity of the neutral monomer in these polyelectrolyte gels, the design of gels that can absorb solvents of nearly any polarity is demonstrated.  相似文献   

16.
A new electrontransport polymer, poly{[N,N′‐dioctylperylene‐3,4,9,10‐bis(dicarboximide)‐1,7(6)‐diyl]‐alt‐[(2,5‐bis(2‐ethyl‐hexyl)‐1,4‐phenylene)bis(ethyn‐2,1‐diyl]} (PDIC8‐EB), is synthesized. In chloroform, the polymer undergoes self‐assembly, forming a nanowire suspension. The nanowire's optical and electrochemical properties, morphological structure, and field‐effect transistor (FET) characteristics are investigated. Thin films fabricated from a PDIC8‐EB nanowire suspension are composed of ordered nanowires and ordered and amorphous non‐nanowire phases, whereas films prepared from a homogeneous PDIC8‐EB solution consist of only the ordered and amorphous non‐nanowire phases. X‐ray scattering experiments suggest that in both nanowires and ordered phases, the PDIC8 units are laterally stacked in an edge‐on manner with respect to the film plane, with full interdigitation of the octyl chains, and with the polymer backbones preferentially oriented within the film plane. The ordering and orientations are significantly enhanced through thermal annealing at 200 °C under inert conditions. The polymer film with high degree of structural ordering and strong orientation yields a high electron mobility (0.10 ± 0.05 cm2 V?1 s?1), with a high on/off ratio (3.7 × 106), a low threshold voltage (8 V), and negligible hysteresis (0.5 V). This study demonstrates that the polymer in the nanowire suspension provides a suitable material for fabricating the active layers of high‐performance n‐channel FET devices via a solution coating process.  相似文献   

17.
《Organic Electronics》2014,15(2):372-377
The device characteristics of top-gate field-effect transistors (FETs) based on typical polymer semiconductor regioregular poly(3-alkylthiophenes) (P3ATs) with different alkyl chain lengths are investigated. High field-effect mobilities of ∼10−2 cm2/Vs are obtained irrespective of alkyl chain length even when polymer gate insulators with different dielectric constants (2.1–3.9) are used. This is attributed to the spontaneous formation of highly ordered edge-on lamellar structures at the surface of P3AT thin films that are the channel regions in top-gate FETs. In addition, top-gate P3AT FETs containing different gate insulators exhibit high operational stability, with low threshold voltage shifts of <0.5 V following prolonged gate bias stress, which is comparable to that of hydrogenated amorphous silicon thin film transistors.  相似文献   

18.
In situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) is used to study the in situ thermal behavior of solution‐processed, high mobility core‐expanded naphthalene diimide thin films. A series of three different molecules is studied where the side‐chain branching position is systematically varied through the use of 2‐, 3‐ and 4‐branched N‐alkyl chains. For all molecules, a number of different phases and their associated phase transitions are observed with heating up to 200 °C. In situ GIWAXS measurements allow following significant variations of packing in each phase including crystalline coherence length, orientation, d‐spacing, and paracrystallinity, as well as, for the first time, thin film thermal expansion coefficients in both the in‐plane and out‐of‐plane direction. Relating these parameters with device measurements of quenched films, a striking correlation is found between high field‐effect mobilities and low in‐plane thermal expansion coefficients. This relationship indicates that high in‐plane thermal expansion coefficients are detrimental to in‐plane charge transport due to the formation of nanoscale defects in the critical first few monolayers upon quenching.  相似文献   

19.
Topology control of polymers is critical for determining their physical properties and potential applications; in particular, topologies that incorporate numerous hydrogen bonding (H-bonding) donors and acceptors along the polymer chains considerably influence the formation of different inter- and intramolecular H-bonding motifs. In this study, the high-level control of inter- and intramolecular H-bonding is investigated in topology-controlled poly(glycidoxy carbonyl benzoic acid)s (PGCs). Three types of topology-controlled PGCs (i.e., linear, hyperbranched, and branched cyclic structures having a similar degree of polymerization) are prepared by introducing aromatic carboxylic acids into the corresponding polyglycidols (PGs) via quantitative post-polymerization modification with phthalic anhydride. The obtained three types of PGCs demonstrated the high-level interplay between the inter- and intramolecular H-bonding in polymer chains by exhibiting the pH-dependent self-association properties in the solution state and the strong adhesion properties in the bulk state with high transparency. Interestingly, the dramatically enhanced adhesive property by 2.6-fold is demonstrated by simple mixing of branched cyclic PGC and topology-controlled PGs to promote the cooperative H-bonding between polymer chains. The new class of cooperative H-bonding is anticipated between topology-controlled polymers to contribute to the development of advanced adhesive and the high potential in biological and biomedical applications due to its excellent biocompatibility.  相似文献   

20.
Disordered nanoporous silver (NPAg) thin films fabricated by a thermally assisted dewetting method are employed as a platform to influence chain alignment, morphology, and optical properties of three well‐known conjugated polymers. Grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) measurements show that the porous structure of the metal induces close π–π stacking of poly(3‐hexylthiophene) (P3HT) chains and extended, planar chain conformations of poly(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl) (PFO) and poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,8‐diyl)] (F8BT). A greater degree of vertically‐oriented P3HT chains are found on NPAg compared with planar Ag. However, PFO and F8BT chain alignment is only affected when pore size is large. The optical properties of NPAg films are investigated by transmission and back‐scattering spectroscopies. Strong back‐scattering is observed for all NPAg morphologies, especially for NPAg with small pore sizes. Photoluminescence spectroscopy of conjugated polymer layers on NPAg showed pronounced emission enhancements (up to factors of 26) relative to layers on glass. The enhancements are attributed primarily to: 1) redistribution of conjugated polymer emission by Ag; 2) redirection of emission by polymer‐filled nanopores; and 3) local electromagnetic field effects. This work demonstrates the potential of NPAg‐thin films to influence molecular chain morphology and to improve light‐extraction in organic optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号