首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了研究艾丁褐煤液化反应动力学,通过对煤液化产物进行分级处理,得到SO24-/Fe2 O3催化艾丁褐煤温和液化动力学模型,通过 origin 软件回归出各反应速率常数及相应的表观活化能和指前因子,最后对褐煤温和液化分级反应工艺提出初步设想。结果表明,模型能够较好地模拟动力学试验结果;液化反应中沥青质向酚转化的活化能为267.62 kJ/ mol,该过程对温度较敏感;反应组分的主要转化为油和沥青质,分别占48%和37%;随反应时间的延长,由沥青质转化得到的油和酚的量逐渐增加,由反应组分转化得到的油和酚的量先增加后趋于恒定,在一定时间内,反应组分是直接转化成油和酚的主要来源;沥青质向油的转化是油增加的速率控制步骤,沥青质向酚的转化是酚增加的速率控制步骤,在煤液化工艺流程中,实行分级加氢液化有利于控制、提高油和酚产率。  相似文献   

2.
3.
梁江朋 《洁净煤技术》2020,26(4):98-103
针对艾丁褐煤高氧含量的特征,通过高压釜对艾丁褐煤直接加氢液化进行试验研究,考察了反应温度、催化剂添加量、氢气初压和溶剂含量对艾丁褐煤液化产物酚类物质生成的影响。结果表明,艾丁褐煤直接液化生成酚类物质的最适宜条件为:反应温度430℃,催化剂添加量1%,氢气初压5.0 MPa,溶剂含量50%。各低级酚在总酚中的占比分别为:苯酚0. 39%,邻甲酚0. 51%,间甲酚1.08%,对甲酚0. 97%,二甲酚5. 07%。通过碱抽提煤液化油得到的酚类物质中的低级酚(苯酚+C1phenol+C2 phenol)在总酚中占比10.7%,低级酚主要集中在保留时间为24~33 min,高级酚占比较大,且随保留时间的延长既多又杂;提高反应温度、溶剂含量和催化剂添加量有利于提升总酚产率,促进煤反应生成酚类物质,氢气初压对总酚产率影响不大;提高反应温度和催化剂添加量能提升低级酚在总酚中的占比,使高级酚趋向于反应生成低级酚,提高溶剂含量和氢气初压抑制低级酚在总酚中的占比。煤直接液化工艺流程中,通过加氢反应,在低温分离过程中尽可能达到较高的酚产率,同时通过将高分进行循环,以延长高分的反应时间,提高油产率,即实行分级加氢液化将有利于控制和提高油和酚产率。  相似文献   

4.
《应用化工》2016,(5):837-843
采用化学共沉淀法合成了磁性固体酸催化剂SO_4~(2-)/Zr O_2/Cr_2O_3/Fe_3O_4,用于催化水体系中纤维素的液化反应,探讨了反应温度、时间以及催化剂用量对纤维素液化反应的影响。研究表明,在240℃下反应8 h,纤维素的转化率达到99%以上,油产率为16.6%,水溶性物质产率达到35.9%。GC-MS分析表明,油相产物的主要成分为醛、酮以及羧酸类物质。  相似文献   

5.
《应用化工》2022,(5):837-843
采用化学共沉淀法合成了磁性固体酸催化剂SO_4(2-)/Zr O_2/Cr_2O_3/Fe_3O_4,用于催化水体系中纤维素的液化反应,探讨了反应温度、时间以及催化剂用量对纤维素液化反应的影响。研究表明,在240℃下反应8 h,纤维素的转化率达到99%以上,油产率为16.6%,水溶性物质产率达到35.9%。GC-MS分析表明,油相产物的主要成分为醛、酮以及羧酸类物质。  相似文献   

6.
根据内蒙古褐煤加氢液化反应规律,按照集总的划分规则,提出了反应动力学模型。以一氧化碳为加氢液化气氛、水为液化溶剂,在高压反应釜中考察了不同反应温度下内蒙古褐煤的液化性能,通过灰平衡法计算得到液化产物中的沥青质产率、油气产率、总转化率。依据动力学方程,采用非线性最小二乘法对数据进行优化拟合,得到反应过程动力学参数,从而进一步得到反应的阿伦尼乌斯表观活化能。研究结果表明:在330~370℃,所建立的液化动力学模型能较好地模拟褐煤液化动力学过程;内蒙古褐煤的液化主反应为煤中易反应组分向前沥青烯、沥青烯和油气的转化,其反应速率常数为0.002 4~0.156 7 min-1,表观活化能为64.790~218.071 k J/mol。  相似文献   

7.
SO_4~(2-)/Fe_2O_3-Dy_2O_3固体超强酸催化合成α-萘乙酸甲酯   总被引:19,自引:0,他引:19  
吴少林  李来生 《化学世界》1997,38(4):184-186
采用稀土改性SO42-/Fe2O3-Dy2O3固体超强酸催化合成植物生长调节剂α-4乙酸甲酯.结果表明,反应产率高、工艺简便、无腐蚀。并以高压液相色谱为手段,对反应混合物进行实时监测。  相似文献   

8.
固体超强酸SO_4~(2-)/Fe_2O_3的制备及其催化性能的研究   总被引:14,自引:0,他引:14  
用(NH4)2SO4·Fe2(SO4)3·24H2O直接焙烧的方法制备了固体超强酸催化剂SO42-/Fe2O3,并以乙酸乙酯的合成反应考察了焙烧温度、焙烧时间对固体酸催化活性的影响。实验表明:最佳焙烧温度为550℃,最佳焙烧时间为4h。当催化剂用量为2g,醇酸物质的量比为1.6∶1,回流时间2h时,乙酸转化率为85.1%。  相似文献   

9.
用(NH_4)_2SO_4·Fe_2(SO_4)_3·24H_2O直接焙烧的方法制备了固体超强酸催化剂SO_4~(2-)/Fe_2O_3,并催化合成了乙酸异戊酯,考察了固体酸催化剂的最佳合成条件。实验表明:最佳焙烧温度为550℃,最佳焙烧时间为4h。当催化剂用量为2g,乙酸、异戊醇物质的量的比为2.6:1,回流时间2h时,乙酸转化率为76.6%。  相似文献   

10.
采用共沉淀法制备了不同比例的SO42-/Fe2O3-Al2O3-SiO2固体超强酸,并将其用于生物质的催化水解制备乙酰丙酸。实验结果发现:焙烧时间、硫酸浸渍浓度对催化剂的性质有影响,焙烧时间越短,比表面积越大,焙烧温度为400℃比表面积最大。将固体超强酸作催化剂用于生物质(蔗糖、甘蔗渣和玉米芯)催化水解制乙酰丙酸,结果发现焙烧温度在600℃,焙烧时间在4小时条件制备的催化剂得到乙酰丙酸的产率也较高。  相似文献   

11.
通过浸渍法制备SO2-4/Fe2O3(SF)固体超强酸,将γ Al2O3纳米纤维通过粘附的方法负载到固体超强酸SO2-4/Fe2O3上,制得SO2-4/Fe2O3 γ Al2O3(SFA)固体超强酸催化剂,并选用乙酸和丁醇的酯化反应来测试SO2-4/Fe2O3 γ Al2O3(SFA)固体超强酸催化剂的催化性能,在不同催化剂种类、不同γ Al2O3加入量、不同焙烧温度和时间以及不同浸渍液种类和浓度的条件下,对催化活性进行了分析和讨论。  相似文献   

12.
研究了固体超强酸SO42-/TiO2-SiO2催化聚合松香与甘油酯化反应的动力学。结果表明:SO42-/TiO2-SiO2催化聚合松香与甘油酯化反应的适宜条件为:n聚合松香∶n甘油=3∶2.5、270°C、反应60 min、搅拌速度800 r/min、催化剂粒径150μm和0.6%的催化剂配比。过量的甘油有利于提高酯化率和产品质景,改变催化剂粒径和搅拌速度,能够消除内外扩散对反应的影响。酯化反应为双分子酰-氧断裂历程的二级反应,动力学方程为k=1.39×1011e-127786/RT,过程限制环节是界面化学反应扩散控制。  相似文献   

13.
为了实现褐煤温和加氢液化联产高附加值酚类化学品,研制了1种新型固体酸催化剂,可以弥补反应条件缓和带来的褐煤大分子结构单元桥健断裂的裂解性能不足,进行了固体酸催化剂的物性表征和活性评价,考察了催化剂类型对褐煤温和加氢液化性能和产物分布的影响规律,探讨了固体酸催化剂用于褐煤温和加氢液化的可行性,并与传统液化进行了比较。结果表明:固体酸催化剂粒径减小,出现了强酸中心,在430℃和15 MPa反应条件下,转化率和油产率与传统液化相当,低级酚产率增加了1.5%,气产率降低近4%,这种固体酸催化剂有利于实现褐煤加氢液化的节能减排增效和产品结构优化,是一种值得关注和深入研究的煤直接加氢液化催化剂。  相似文献   

14.
采用共沉淀法制备纳米Fe_3O_4-PO■/ZrO_2固体酸催化剂,利用X-射线衍射(XRD)、N_(2 )吸脱附、红外光谱(FTIR)和热重分析(TG)对催化剂的结构进行表征,探讨了纳米Fe_3O_4加入量、焙烧温度和时间对固体酸催化剂性能的影响。考察了纳米Fe_3O_4负载量、醇油摩尔比、反应温度和反应时间对制备文冠果生物柴油的影响。结果表明,当Zr(OH)_4与纳米Fe_3O_4摩尔比为3∶1,焙烧温度为750℃,焙烧时间为3 h时,纳米Fe_3O_4-PO■/ZrO_2固体酸催化剂的催化性能最佳,生物柴油酯化率达85.4%。当催化剂的用量为油重的1%,醇油摩尔比为9∶1,反应温度为80℃和反应时间为4 h时,文冠果生物柴油的转化率可达到92.8%。  相似文献   

15.
利用制备的固体超强酸SO2-4/Fe2O3代替浓硫酸作催化剂,将正丙酸和正丙醇酯化合成丙酸丙酯,讨论了催化剂的制备及合成丙酸丙酯的条件。实验表明:固体超强酸不仅能减少对生产设备的腐蚀,而且具有很好的催化活性,当催化剂用量为1.0g(正丙酸为0.1mol),醇酸摩尔比为2.5∶1,回流反应3h时,酯收率可达97.2%。  相似文献   

16.
固体超强酸SO_4~(2-)/Fe_2O_3催化合成乳酸正丁酯   总被引:2,自引:0,他引:2  
乳酸正丁酯是一种重要的 α-羟基酯类化合物 ,主要用作工业溶剂 [1] 和食用香料 [2 ] 。乳酸酯与其他羧酸酯相比合成较困难 ,这是因为常用商品乳酸中含有 1 5%~ 2 0 %水 ,反应过程中又有水生成 ,不利于酯化反应的进行 ;同时乳酸和乳酸正丁酯均为双官能团的化合物 ,易发生副反应。工业上 ,一般以硫酸为催化剂 ,由乳酸和正丁醇直接催化制得[3] 。虽然硫酸价格低廉、酯产率高 ,但硫酸对设备的腐蚀性强 ,反应后处理工序繁琐 ,三废严重 ,副反应多 ,产物分离难 ,色泽不好。曾有文献报道采用金属卤化物、稀土硫酸盐、SO2 -4/Ti O2 固体超强酸代…  相似文献   

17.
蒋涛  文艺  陆敏 《应用化工》2005,34(8):492-494
研究了用Fe2O3/SO42-作为催化剂,使肉桂酸与正丁醇发生酯化反应合成肉桂酸丁酯。获得最佳的反应条件为正丁醇与肉桂酸的摩尔比为2∶1,反应1.5 h,反应温度为130℃,催化剂0.8 g/0.5 mol酸,收率可达98.7%以上。  相似文献   

18.
利用磁性对纳米固体超强酸组合,制备出磁性纳米SO42-/Fe3O4-ZrO2固体超强酸催化剂,并用TEM、IR、Ham-m ett指示剂检测磁性纳米固体超强酸催化剂性能。将其用于己二酸二正辛酯(DOA)的合成反应中。得到最佳反应条件为负压下,反应温度155℃,n(正辛醇)∶n(己二酸)=3.2∶1,反应时间2 h,w(催化剂)=1.5%,己二酸的转化率达99%。利用催化剂的磁性可将纳米颗粒催化剂迅速分离,回收率达93.8%,并能重复使用。  相似文献   

19.
用化学共沉淀法制备了一系列SO42-ZnO/ZrO2/Fe3O4磁性固体超强酸,利用XRD、TG-DSC、VSM、SEM、TEM及HRTEM等手段对样品结构进行表征.结果表明:引入一定量的Fe3O4和ZnO,有利于四方品相t-ZrO2结构的稳定;Fe3O4超细粒子的引入,使固体超强酸具备了超顺磁性;HRTEM显示ZrO2晶体生长趋向于m-ZrO2的[101]方向,其[101]晶面间距为d(101)=0.29 am,与XRD衍射结果一致.Hammett指示剂测得样品SZZ-1-25-600酸强度最强为H0-13.8,酸性大于浓H2SO4(H0=-11.93).  相似文献   

20.
为研究胜利褐煤在初始阶段的煤液化反应动力学,在可快速升降温的微型高压釜中对胜利褐煤进行了加氢液化反应,得到了反应初期煤液化参数,并对胜利褐煤加氢液化反应初期的动力学行为进行分析。结果表明,虽然反应器升温速度较快,但到达反应温度时,仍有一定量的煤发生了转化,在反应温度440℃、反应时间为0时转化率达到28.12%;在较低温度下,胜利褐煤只发生了部分热解反应,反应后期几乎不再转化,在380℃、反应10 min后转化率已达28%,后续基本不变;随着反应温度的升高,反应转化率、油水产率、气产率等指标增大,反应前10 min增速较快,10~25 min时反应速率减缓,主要是沥青烯组分作为中间产物不断向油转化,速率较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号