首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apriori算法是解决频繁项集挖掘最常用的算法之一,但多轮迭代扫描完整数据集的计算方式,严重影响算法效率且难以并行化处理。随着数据规模的持续增大,这一问题日益严重。针对这一问题,提出了一种基于项编码和Spark计算框架的Apriori并行化处理方法——IEBDA算法,利用项编码完整保存项集信息,在不重复扫描完整数据集的情况下完成频繁项集挖掘,同时利用Spark的广播变量实现并行化处理。与其他分布式Apriori算法在不同规模的数据集上进行性能比较,发现IEBDA算法从第一轮迭代后加速效果明显。结果表明,该算法可以提高大数据环境下的多轮迭代的频繁项集挖掘效率。  相似文献   

2.
基于矩阵的频繁项集挖掘算法   总被引:6,自引:3,他引:6       下载免费PDF全文
如何高效地挖掘频繁项集是关联规则挖掘的主要问题。该文根据集合论和矩阵理论,提出一种基于矩阵的频繁项集挖掘算法。该算法只需扫描数据库一次,就能把所有事务转化为矩阵的行,把所有项和项集转化为矩阵的列,在对矩阵操作时能一次性产生所有频繁项集,且当支持度阈值改变时无需重新扫描数据库。实验结果表明,该算法的挖掘效率高于Apriori算法。  相似文献   

3.
论述了频繁项集数据挖掘算法,并采用自底向上和自顶向下遍历搜索分类方法,对已有的频繁项集挖掘算法进行了分析和比较。  相似文献   

4.
传统的频繁项集挖掘方法具有一定的局限性。Apriori算法需要重复扫描输入数据,导致很高的I/O负载,算法性能不高;Fp-growth算法需要在内存中建立Fp-tree并根据Fp-tree挖掘频繁项集,导致算法受到计算机的内存限制。在大数据时代,由于挖掘数据规模十分巨大,更加凸显这些传统算法的局限性。对此,一方面改进传统的频繁项集挖掘算法,另一方面基于Spark框架实现分布式频繁项集挖掘算法(FIMBS)。实验结果表明,该算法相比基于MapReduce框架的关联规则算法具有显著的优势。  相似文献   

5.
对现有的基于MapReduce的并行频繁项集挖掘算法进行了研究, 提出一种基于后缀项表的并行闭频繁项集挖掘算法, 通过后缀项表的引入及以闭频繁项集挖掘的形式, 减少组分间的数据传送量, 提高挖掘效率。实验表明, 该算法可以有效缩短平均挖掘时间, 对于高维大数据具有较好的性能。  相似文献   

6.
针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD).该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNod-eset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间.实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果.  相似文献   

7.
频繁项集挖掘算法综述   总被引:4,自引:0,他引:4  
该文基于频繁项集挖掘算法的研究现状,采用自底向上遍历搜索、自顶向下遍历搜索和混合遍历搜索的分类方法,对现有的频繁项集挖掘算法进行归纳分类,分析和比较了各类别中具有代表性的挖掘算法,总结每种算法各方面的特性.同时,对一些特殊的频繁项集挖掘算法也作了简单介绍.旨在使读者全面掌握频繁项集挖掘算法目前的研究水平,便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,也便于使用者在应用时对算法的选择和使用.  相似文献   

8.
基于频繁项集挖掘算法的改进与研究   总被引:2,自引:1,他引:1  
关联规则挖掘是数据挖掘领域中重要的研究内容,频繁项集挖掘又是关联规则挖掘中的关键问题之一。针对已有的频繁项集挖掘算法存在的问题,通过对Apriori算法的分析,提出了Inter-Apriori频繁项集挖掘算法。该算法使用交集策略减少扫描数据库的次数,从而使算法达到较高的效率。实验结果表明,Inter-Apriori算法是Apriori算法效率的2~4倍。  相似文献   

9.
频繁模式挖掘是最重要的数据挖掘任务之一,传统的频繁模式挖掘算法是以"批处理"方式执行的,即一次性对所有数据进行挖掘,无法满足不断增长的大数据挖掘的需要。MapReduce是一种流行的并行计算模式,在并行数据挖掘领域已得到了广泛的应用。将传统频繁模式增量挖掘算法CanTree向MapReduce计算模型进行了迁移,实现了并行的频繁模式增量挖掘。实验结果表明,提出的算法实现了较好的负载均衡,执行效率有明显提升。  相似文献   

10.
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI—Miner(The Miner Basedon Depth—First Searching for Mining Maximal Frequent Itemsets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。  相似文献   

11.
关联规则挖掘的矩阵算法   总被引:19,自引:0,他引:19  
关联挖掘作法中的Apriori算法提供了一种根据查找频繁项集来发现数据集中的关联规则的方法,这种算法思路简单易于实现;但在由低次频繁项集生成高次频繁项集时需反复查找数据库,在效率上存在一定的欠缺,在寻找高次频繁项集时尤为明显,文章提出了一种新的关联规则挖掘算法:矩阵算法。同Apriori算法相比较,该算法能直接查找高次频繁项集,可以有效地屏蔽Aptiori算法性能瓶颈试验结果表明,当频繁项级较高时该算法比Apriori具有更高的执行效率和性能,并具有良好的可行性。  相似文献   

12.
基于排序FP-树的频繁模式高效挖掘算法   总被引:11,自引:0,他引:11  
FP-growth算法是目前较高效的频繁模式挖掘算法之一。在FP-growth算法中,FP-树及条件FP-树的构造和遍历占了算法绝大部分的时间,如果能减少这方面的时间,则有望进一步改善算法的效率。本文给出了一个频繁模式挖掘算法SFP-growth。算法通过将FP-树有序化及采用高效排序算法等措施来提高FP-树构造的效率,从而使算法达到较高的效率。实验结果表明,SFP-growth是一个高效的频繁模式挖掘算法,其性能优于Apriori、Eclat和FP-growtn算法。  相似文献   

13.
频繁子图挖掘是数据挖掘领域的一个重要问题,并且有着广泛的应用。在Hadoop平台上实现了一种基于MapReduce的高效频繁子图挖掘算法Cloud-GFSG(cloud-global frequent subgraph)。该算法基于Apriori思想,在扩展边生成新的子图时,使用已经挖掘出的k-1阶的频繁子图生成k阶的频繁子图。同时,检查是否存在待扩展生成的子图,设定生成的频繁子图表示规则,保证了频繁子图信息的唯一性。较同类算法相比,该算法在挖掘频繁子图时更具通用性,并且在扩展边时避免产生大量的复制图,从而使得算法的正确性得以保证,且运行效率显著提高。  相似文献   

14.
在对海量数据进行聚类的过程中,传统的串行模式局限性越来越明显,难以在有效时间内得出满意结果的问题,本文提出一种基于Hadoop平台下MapReduce框架的并行聚类模型。理论和实验结果证明该模型具有接近线速的加速比,针对海量数据具有较高效率。  相似文献   

15.
频繁闭项集的挖掘是发现数据项之间关联规则的一种有效方式。当前以MapReduce模式为基础的云计算平台为解决海量数据中的关联规则挖掘问题提供新的解决思路。文中提出并实现一种基于Hadoop云计算平台的频繁闭项集的并行挖掘算法。该算法主要包括并行计数、构造全局频繁项表、并行挖掘局部频繁闭项集和并行筛选全局频繁闭项集四个步骤。在多个数据集上的实验表明,该方法能较大提高数据挖掘的效率,具有较好的加速比。  相似文献   

16.
关联规则挖掘是最常用、最重要的数据挖掘任务之一,经典的关联规则挖掘算法有Apriori、FP-Growth、Eclat等。随着数据的爆炸式增长,传统的算法已不能适应大数据挖掘的需要,需要分布式、并行的关联规则挖掘算法来解决上述问题。MapReduce是一种流行的分布式并行计算模型,因其使用简单、伸缩性好、自动负载均衡和自动容错等优点,得到了广泛的应用。本文对已有的基于MapReduce计算模型的并行关联规则挖掘算法进行了分类和综述,对其各自的优缺点和适用范围进行了总结,并对下一步的研究进行了展望。  相似文献   

17.
频繁模式挖掘在数据挖掘领域已经有广泛的应用.然而,对于增量更新频繁模式挖掘研究得不是很多.本文提出了一种新颖的增量更新频繁模式树结构(IUNP_Tree),构建它只需要对数据库扫描一次.此外,提出了基于条件矩阵(conditional matrix)的频繁模式挖掘算法(FPBM_Mine)和增量更新算法INUPA,可以有效地处理数据库的增量更新问题.实验表明,该算法是有效的,并且运行效率高于FP-growth算法.  相似文献   

18.
对某高校教学资源平台的海量日志进行了分析,将传统单机分析处理模式,转变为Hadoop框架下的MapReduce分布式处理模式。MapReduce采用分而治之的思想,很好地解决了单机对海量数据处理产生的瓶颈问题。通过分析Hadoop源码的使用,认真研究MapReduce对海量数据处理作业流程分析,提出了MapReduce分布式作业计算的优化策略,从而更好地提高了海量数据的处理效率。  相似文献   

19.
关联规则挖掘是数据挖掘的一项重要技术,它主要是通过频繁项集挖掘得到关联规则。基于云计算的MapReduce模型的数据挖掘算法可以提高挖掘的效果及性能。  相似文献   

20.
冯洁  陶宏才 《微计算机信息》2007,23(18):164-166
关联规则的发现是数据挖掘的一个重要方面,产生频繁项集是其中一个关键步骤。提出了一种基于十字链表快速挖掘频繁项集的算法,该算法只需扫描一次数据库,充分利用已有信息产生频繁项集,无需存储候选项集。通过与其它一些算法比较,说明该算法有更好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号