共查询到17条相似文献,搜索用时 78 毫秒
1.
弹道目标再入段的运动受到空气阻力、重力等力的影响,具有明显的非线性特征.传统的卡尔曼滤波是线性、高斯问题的最优滤波器,但无法处理非线性的估计问题.扩展卡尔曼滤波利用泰勒级数展开把非线性方程线性化,是解决非线性估计问题的有效算法;而近些年来出现的粒子滤波以其解决非线性问题的卓越性能,得到了迅速发展.文章对弹道目标再入段的运动特征进行研究,建立了目标的状态空间模型,并应用扩展卡尔曼滤波和粒子滤波实现了对弹道目标的跟踪.通过比较仿真结果,证明粒子滤波比扩展卡尔曼滤波精度更高,对噪声的抑制能力更强,也更稳定.因而具有重大的研究意义. 相似文献
2.
针对复杂环境下视频目标跟踪精确度低的问题,提 出了一种基于混合迭代无迹粒子滤波(HI-UPF)和关联系数自 适应融合的目标跟踪算法。首先采用统计线性回归的方法对无迹变换进行优化,提出了HI- UPF,不 仅提升了滤波精度,而且有效降低了算法的时间消耗;其次基于关联系数,采用一种自适应 融合方法,实现了加性 融合和乘性融合的自适应切换,并根据关联系数提出一种改进的自适应加性融合方法。仿真 实验表明,本文方法对 于复杂条件下的目标跟踪具有较高的精度和较强的鲁棒性。 相似文献
3.
针对空-地目标跟踪中目标大幅度变速运动而引 起的跟踪失败问题,基于Kristan等人提出的双步(TS)动态模型框架,对空-地目标跟 踪中目标运动特点进行分析与建模,改进TS模型中 的保守模型以适应加速运动,提出适于描述大幅度变速运动的加速度双步(TSA)动态模型作 为粒子滤波(PF)跟踪算法的动态模 型,实现对粒子状态的精确预测,进而达到使用较少粒子即可对目标鲁棒跟踪的目的。对空 -地目标跟踪的测试视频进行测 试,结果表明,本文算法可对大幅度变速运动目标稳定跟踪,正确跟踪率为92%,对目标 尺寸约为25pixel×30pixel时的处理帧率为29frame/s。本文算法具有较好的鲁棒性与实时性。 相似文献
4.
一种基于粒子滤波的自适应运动目标跟踪方法 总被引:6,自引:0,他引:6
该文提出了一种基于粒子滤波的自适应运动目标跟踪方法。均值漂移算法是一种最优梯度下降法,通过迭代来搜索目标,从而实现对运动目标的跟踪。而粒子滤波是一种在非线性和非高斯情形下进行跟踪的强有力方法。该文首先对图像的直方图进行改进,提出了一种基于统计直方图分布的目标模型,然后通过这个模型将这两种方法有效地结合起来。根据跟踪的过程,自适应地调整参数,能够较好地处理图像序列中由于光线变化或遮挡所带来的影响。实验证明,该文所提出的方法与均值漂移方法相比,即使在复杂的情形下,也能够准确地对目标进行跟踪。 相似文献
5.
针对传统粒子滤波(PF)算法采用单一颜色特征建模 跟踪目标性能差的缺陷,提出一种颜色特征与纹理特 征相融合的PF目标跟踪新算法。首先,采用一种具有抗噪声和保护纹理边缘的全局中值二值 模式 (GMBP)纹理算子,对模板图像进行局部差绝对值处理,得到幅 值序列模板,将幅值序列模板内的中值作为模板的阈值,与模板邻域比较获得新的纹理图像 ;然后,与 具有光照不变特性的局部二值模式(LBP)纹理算子结合,形成一种(GMLBP)新的纹理描述算子 。最后,分别计算GMLBP纹理特征粒子权值和HSV颜色特征粒子权 值,并依据权值大小确定融合系数,对纹理特征粒子权值和颜色特征粒子权值进行线 性融合,再对融合后粒子权值进行归一化处理,从而得到目标位置状态的最终估计值。对比 实验结果表明, 相对于单一颜色特征的目标跟踪算法,所提算法捕捉目标位置准确且具有更低的平均跟踪误 差,其平均误差降低了近2倍。 相似文献
6.
7.
8.
在视频分析处理领域中,特别是在视频监控领域,目标跟踪正在受到越来越多的关注。由于在实际应用中,利用运动摄像机拍摄的视频中,会造成背景的运动和目标尺寸的变化,即使是在固定摄像机拍摄的视频中,也会由于背景环境的复杂,造成目标的丢失和干扰。针对这一问题,为了改善在复杂场景下的目标跟踪效果,提出了结合梯度方向直方图(HOG)和粒子滤波的目标跟踪算法。此方法是通过在传统粒子滤波算法的算法框架下,增加目标跟踪的特征,提高了跟踪的鲁棒性,并根据检测结果确定目标。实验仿真表明,与传统单一特征的粒子滤波算法相比,文中的算法更能准确有效地跟踪复杂背景下的动态目标。 相似文献
9.
为了提高汽车安全辅助驾驶技术和减少道路交通事故,根据行人运动变化特点,对基于粒子滤波的跟踪算法进行改进,提出一种新的行人跟踪算法.通过将空间距离中心加权和相关信息相结合的颜色直方图的观测模型方法,实现行人目标跟踪.实验结果表明,与基于HSV空间颜色直方图的粒子滤波跟踪算法相比,该算法有效解决复杂背景下局部遮挡和全遮挡问题,并在鲁棒性方面明显地优于前一种算法. 相似文献
10.
介绍了粒子滤波(PF)的基本思想和免重采样无味高斯PF(UGPF)算法的基本原理,特别针对空-海单站只测方位目标运动分析TMA(BO—TMA)问题应用UGPF和EKF(扩展卡尔曼滤波)进行了对照研究,建立了问题的离散非线性滤波估计模副,设计了典型的应用场景,给出了Monte Cado仿真运行结果;表明UGPF具有更高的估计精度、更好的收敛特性和滤波一致性。 相似文献
11.
为解决复杂场景中目标跟踪问题,提出了一种噪声未知情况下的自适应无迹粒子滤波(A-UPF)算法。算法采用改进的Sage-Husa估计器对系统未知噪声的统计特性进行实时估计和修正,并与无迹Kalman粒子滤波器相结合产生优选的建议分布函数,降低系统估计误差的同时有效提升了系统的抗噪声能力。实验结果表明,本文方法对于复杂条件下的目标跟踪问题具有较高的精度和较强的鲁棒性。 相似文献
12.
基于均值漂移和粒子滤波的红外目标跟踪 总被引:4,自引:1,他引:4
为了提高红外目标跟踪的准确性和稳健性,提出了基于均值漂移(mean shift)和粒子滤波(PF)相结合的红外目标跟踪方法.在PF理论框架下,使用均值漂移为一种迭代模式寻找过程,对随机粒子样本进行重新分配,使粒子向目标状态的最大后验核密度估计方向移动,在均值漂移迭代过程中对样本权值进行更新.红外目标的状态后验概率分布用重新分配的加权随机样本集表示,对随机样本集使用PF算法实现红外目标运动的跟踪.实验结果表明,和一般PF和均值漂移相比,本文方法具有优越性和更强的稳健性. 相似文献
13.
为了提高复杂背景下红外目标跟踪的准确性和鲁棒 性,提出了紧耦合粒子滤波(PF)与均值漂移(mean shift)的红外目标跟踪方法。在PF框 架下,利用一组5参数集(中心横坐标、中心纵坐标、宽度、高度以及倾斜角)作为状 态变量表 征随机的粒子样本;然后使用自适应均值漂移作为一种迭代模式寻找过程,对随机粒子样本 进行重新分配,使粒子向目标 状态的最大后验核密度估计方向移动,同时利用迭代过程中的Bhattacharyya系数对粒子的 权值进行更新;最后利用重新分配 后的加权粒子集合实现对红外目标的跟踪。实现结果表明,与一般的PF相比,本文方法能有 效减少所需粒子数(N=15),进而降 低跟踪耗时;与现有的PF与均值漂移相结合的方法相比,本文方法在耗费时间 仅增加14%的代价上,使跟踪误差大大降低(约 为原误差的1/3至1/4),准确性和鲁棒性得到显著提高;本文方法能够实现在复杂背景下稳 健准确地跟踪红外目标。 相似文献
14.
15.
基于微小型机载成像跟踪系统设计思想及需求,设计并实现了以高性能的DSP芯片TMS320-DM642为核心处理器,结合可编程逻辑器件CPLD和FPGA的实时图像跟踪处理平台。平台采用基于粒子滤波的目标跟踪算法,实现对目标的实时跟踪。采用卡尔曼滤波器,提高了粒子的利用效率,在改进了算法实时性的同时解决了图像跟踪系统的延时性问题,提高了跟踪系统的稳定性。算法仿真结果表明,与传统相关匹配算法相比,基于粒子滤波的跟踪算法具有更好的鲁棒性和实时性,能满足机载成像跟踪系统实时图像跟踪的要求。 相似文献
16.
17.
Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method. 相似文献