首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李改  李磊  张佳强 《计算机应用》2021,41(12):3515-3520
传统的基于评分预测的社会化协同过滤推荐算法存在预测值与真实排序不匹配的固有缺陷,而基于排序预测的社会化协同排序推荐算法更符合真实的应用场景。然而,现有的大多数基于排序预测的社会化协同排序推荐算法要么仅仅关注显式反馈数据,要么仅仅关注隐式反馈数据,没有充分挖掘这些数据的价值。为充分挖掘用户的社交网络和推荐对象的显/隐式评分信息,同时克服基于评分预测的社会化协同过滤推荐算法存在的固有缺陷,在xCLiMF模型和TrustSVD模型基础上,提出一种新的融合显/隐式反馈的社会化协同排序推荐算法SPR_SVD++。该算法同时挖掘用户评分矩阵和社交网络矩阵中的显/隐式信息,并优化排序学习的评价指标预期倒数排名(ERR)。在真实数据集上的实验结果表明,采用归一化折损累计增益(NDCG)和ERR作为评价指标,SPR_SVD++算法均优于最新的TrustSVD、MERR_SVD++和SVD++算法。可见SPR_SVD++算法性能好、可扩展性强,在互联网信息推荐领域有很好的应用前景。  相似文献   

2.
李改 《计算机应用》2015,35(5):1328-1332
之前有关协同排序算法的研究没有充分利用数据集中信息的问题,要么只侧重于研究显式评分数据,要么只侧重于研究隐式评分数据,目前还没有人运用排序学习的思想把二者结合起来进行研究.针对之前研究的不足,在最新的扩展的少即是好协同过滤(xCLiMF)模型和最经典的变形的奇异值分解(SVD++)算法的基础上,提出了一种融合显/隐式反馈的协同排序算法MERR_SVD++来直接优化排序学习的评价指标ERR.在实际数据集上实验验证,与经典的xCLiMF、Cofi排序(CofiRank)、PopRec、Random算法相比,MERR_SVD++算法在归一化折损累积增益(NDCG)和预期的相关性排序(ERR)这两个评价指标下性能均提高了25.9%以上,而且算法运算时间与评分点个数线性相关.由于MERR_SVD++算法推荐精度高、可扩展性好,因此适用于处理大数据,在互联网信息推荐领域具有广泛的应用前景.  相似文献   

3.
余敦辉  成涛  袁旭 《计算机科学》2020,47(12):106-113
为了更有效地实现软件众包任务推荐,提升软件开发质量,为工人推荐合适的任务,降低工人利益受损风险,以达到工人和众包平台双赢的效果,设计了一种基于排序学习的软件众包任务推荐方法。首先,基于改进的隐语义模型提取工人-任务间的隐含特征;然后,结合隐式信息对排序学习模型进行改进,并将提取的隐含特征进行排序学习训练,获得最优排序模型;最终通过排序模型对测试集任务进行排序得到任务推荐列表,从而为工人进行众包任务推荐,并采用NDCG,MAP,Recall推荐评价指标对推荐结果进行检验。实验表明,所设计的方法能有效提高软件众包任务推荐的精度,其推荐评价指标的NDCG,MAP,Recall值分别达到0.722,0.326,0.169。与基于用户的协同过滤算法相比,推荐精度提升了18.6%;与仅基于RankNet的排序学习算法相比,精度提升了10.2%,因此能够有效指导软件众包任务推荐。  相似文献   

4.
变分自编码器(variational autoencoder, VAE)近年来在推荐领域有着很成功的应用.这种非线性概率模型的优势在于它可以突破线性模型有限的建模能力,而线性模型目前仍然在协同过滤研究中占主导地位.尽管基于变分自编码器的推荐方法已经取得了优越的表现,但仍存在一些未解决的问题,例如无法针对隐式反馈的推荐数据为用户生成个性化的推荐排序列表.因此,通过借助多项式似然对变分自编码器实施基于列表的排序策略,提出了一种深度生成推荐模型.该模型具有同时生成点级隐式反馈数据并为每个用户创建列表式偏好排序的能力.为了将排序损失与变分自编码器损失结合起来,采取归一化累计损失增益(normalized cumulative loss gain, NDCG)作为排名损失,并通过平滑函数进行近似.在3个真实世界数据集上(MovieLens-100k,XuetangX和Jester)进行了实验.实验结果表明:结合了列表级排序的变分自编码器在推荐个性化列表所有评价指标上,相比于其他基线模型拥有更出色的表现.  相似文献   

5.
李改  李磊 《自动化学报》2015,41(2):405-418
单类协同过滤(One-class collaborative filtering, OCCF)问题是当前的一大研究热点.之前的研究所提出的算法对噪声数据很敏感,因为训练数据中的噪声数据将给训练过程带来巨大影响,从而导致算法的不准确性.文中引入了Sigmoid成对损失函数和Fidelity成对损失函数,这两个函数具有很好的灵活性,能够和当前最流行的基于矩阵分解(Matrix factorization, MF)的协同过滤算法和基于最近邻(K-nearest neighbor, KNN)的协同过滤算法很好地融合在一起,进而提出了两个鲁棒的单类协同排序算法,解决了之前此类算法对噪声数据的敏感性问题.基于Bootstrap抽样的随机梯度下降法用于优化学习过程.在包含有大量噪声数据点的实际数据集上实验验证,本文提出的算法在各个评价指标下均优于当前最新的单类协同排序算法.  相似文献   

6.
近年来,推荐系统越来越受到人们的关注,按照应用场景主要分为评分预测和Top-K推荐。考虑到传统评分推荐系统和Top-K排序推荐系统只考虑用户和项目的二元评分信息,具有一定的局限性,因此扩展了一种基于列表排序学习的矩阵分解方法。一方面,充分考虑用户之间关注关系。首先通过用户之间的关注关系计算用户之间的信任度,接着通过用户之间的信任度在原始模型的损失函数中添加用户社交约束项,使相互信任的用户偏好向量尽可能接近。另一方面,计算项目所拥有标签的权重,并以此计算项目之间的标签相似度,再将项目的标签约束项添加至损失函数中。在真实Epinions和百度电影数据集中的实验结果表明,该方法的NDCG值和原始模型相比具有一定的提高,有效地提高了推荐准确率。  相似文献   

7.
李改  陈强  李磊  潘进财 《计算机科学》2017,44(2):88-92, 116
单类个性化协同排序算法的研究的核心思想是把单类协同过滤问题当成排序问题来看待。之前的研究仅仅使用了隐式反馈数据来对推荐对象进行排序,这限制了推荐的准确度。随着在线社交网络的出现,为了进一步提高单类个性化协同排序算法的准确度,提出了一种新的融合社交网络的单类个性化协同排序算法。在真实的包含社交网络的2个数据集上的实验验证了该算法在各个评价指标下的性能均优于几个经典的单类协同过滤算法。实验证明,社交网络信息对于提高单类个性化协同排序算法的性能具有重要作用。  相似文献   

8.
9.
陆艺  曹健 《计算机科学》2016,43(4):7-15, 49
推荐系统作为解决信息过载的一种有效手段,已成为工业界和学术界的研究热点,它依据用户的显式或隐式反馈信息推测其需求、兴趣等,将其偏好的信息、产品等推荐给他们。面向显式反馈信息的推荐方法是目前的主流,而隐式反馈信息的普遍性使得基于此类的推荐方法具有更广的适用性,但是,隐式反馈信息并不能直接反映用户的偏好,因而利用它进行推荐具有很大的挑战。首先阐述了隐式反馈的特性以及基于此类信息进行推荐的必要性和所面临的问题;然后对面向隐式反馈的推荐算法给出了全面的、系统的分类,在此基础上比较了各类隐式反馈的推荐方法的优、缺点,并进一步分析了适用于隐式反馈推荐方法的多种评价指标;最后讨论了面向隐式反馈推荐方法的未来发展方向。  相似文献   

10.
现有的隐式反馈协同算法直接利用稀疏的二值社交信任信息辅助推荐,存在严重的数据稀疏问题,且没有深层次地融合社交信任信息的影响。针对以上问题,提出利用降噪自编码器深度融合用户隐式反馈数据与社交信息的算法。首先从不同的角度区分用户信任,提出一种信任相似度的新度量方法来改善社交数据的稀疏性,利用降噪自编码器将信任数据与用户隐式交互信息深度融合,通过综合二者的影响,有效提高了推荐质量。实验表明,该算法优于现有主流的的隐式反馈推荐算法。  相似文献   

11.
钱梦薇  过弋 《计算机科学》2021,48(9):103-109
针对传统矩阵分解算法大多是浅层的线性模型,难以学习到深层次的用户和物品的隐特征向量,且在数据稀疏的情况下容易产生过拟合的问题,文中提出一种融合偏置深度学习的矩阵分解算法,在解决数据稀疏问题的同时,还能学习到表征能力更强的距离特征向量.首先,通过用户与物品的显式和隐式数据构建用户与物品的交互矩阵,并将交互矩阵转化为相应的...  相似文献   

12.
摘 要: 针对传统的相似度计算方法仅依靠用户评分信息矩阵来计算物品或用户相似度,物品相似度的计算考虑了所有用户的历史反馈信息等问题,提出一种改进的协同过滤推荐算法。首先,以所有物品的度的平均值作为阈值,在用户相似度计算公式中引入用户共同评分权重以及流行物品权重。其次,在物品相似度计算公式中引入物品时间差因素和用户共同评分权重。最后,将兴趣相似的用户聚成一类,在类内应用推荐算法分别为用户进行推荐。实验结果表明,相比于传统的协同过滤推荐算法,新算法得到的推荐结果在召回率上提高了2.1%。该算法可在一定程度上提高推荐算法的精度以及推荐质量。  相似文献   

13.
传统推荐算法主要关注推荐准确性,而用户对项目的不同偏好和多样性需求也影响着用户体验和满意度.针对该问题,提出了一种新的算法,在计算项目相似度时结合了用户对不同项目的评分差异,以此可以提高项目相似度计算的准确性,根据用户历史评分数据和项目类别数据得到用户-类别权重矩阵,一方面以此计算基于熵的多样性,另外根据用户对项目的兴...  相似文献   

14.
为了解决传统推荐算法使用单一模型无法准确捕获用户偏好的问题, 将稀疏线性模型作为基本推荐模型,提出了基于用户聚类的局部模型加权融合算法来实现电影的Top-N个性化推荐。同时,为了实现用户聚类,文中利用LDA主题模型和电影的文本内容信息,提出了语义层次用户特征向量的计算方法,并基于此来实现用户聚类。在豆瓣网电影数据集上的实验验证结果表明,所提局部加权融合推荐算法提升了原始基模型的推荐效果,同时又优于一些传统的经典推荐算法,从而证明了该推荐算法的有效性。  相似文献   

15.
针对推断网络(NBI)的二分图方法中只是考虑用户是否评价过项目,却没有利用用户评分高低这一局限性,提出基于偏好的推断网络(PNBI)推荐方法。该方法在推断网络的基础上,考虑单个用户对项目评分高低体现了该用户对项目的喜好程度,在“用户-项目”的资源分配过程中,将资源分配给评分值较大的评分项,该方法能克服NBI算法中无法使用低评分值数据的缺陷。考虑到数据的稀疏性问题,采用倒排表的方法来节省相似度的运算次数,加速算法。在MovieLens数据集上的实验表明, PNBI二分图推荐算法在准确率、覆盖率和召回率三个方面均优于NBI二分图推荐算法。  相似文献   

16.
推荐系统是当前数据挖掘领域的研究热点,海量数据的涌现促使多源信息融合的推荐方法得到极大的关注.但是,现有的基于异质信息融合的推荐方法在进行特征表示时往往忽略了用户和项目之间的交互信息以及元路径之间的相互影响.因此,考虑到属性节点嵌入和结构元路径的不同视角,提出了一种多层次图注意力的网络推荐方法.该方法通过构建不同的元路...  相似文献   

17.
随着移动计算技术的发展,人们可以在移动环境中方便地在线获取阅读资源,但如何在海量资源中检索出符合用户兴趣的内容,成为亟需解决的问题。为此,提出一种面向移动阅读平台的资源推荐算法。根据用户的知识结构和用户之间的交互记录进行建模,计算用户相似度以获取相似用户,利用最近邻集合结合协同过滤算法进行资源推荐。在系统平台上进行测试,该算法的绝对误差平均值为0.636,低于同类推荐系统的平均水平,表明推荐算法是有效的。  相似文献   

18.
基于流形排序的查询推荐方法   总被引:1,自引:0,他引:1  
针对传统查询推荐方法中存在的相关性度量问题和冗余性问题,该文中提出了一种新的基于流形排序的查询推荐方法。该方法利用查询数据内在的全局流形结构来获得查询之间的相关性,可以有效避免传统方法中相关性度量对高维稀疏查询数据处理的不足;同时,该方法通过提升结构上具有代表性的查询来达到减小查询推荐的冗余性。在一个大规模商业搜索引擎查询日志上的实验结果表明:使用流形排序的查询推荐方法要优于传统查询推荐方法和现有的Hitting-time Ranking方法。  相似文献   

19.
面对查询服务如何为用户提供满足需求的个性化推荐.提出一种基于自然语言进行评论分析、并提取特征属性进行多属性决策,为用户提供推荐排名策略,建立基于评论语义和Web挖掘技术的信息推荐系统实现个性化服务.解决了对同一商品的不同店铺之间的优劣比较和推荐,对各店铺的用户评论进行了主题抽取和情感分析,通过聚类成为”客户满意度”属性,与从店铺页面上爬取到的客观数据一起代入到推荐系统中进行计算.系统允许用户自主选择关心的属性及重要性排序,使得系统给出的推荐结果既能客观全面的反映店铺的状况,又能符合用户的评价偏好.  相似文献   

20.
在数据挖掘的许多实际应用中,在进行准确分类(classification)的同时,按照分类的可能性大小进行排序(ranking)日益显得重要。许多分类算法在设计时只考虑分类的准确性,未考虑对分类的可能性进行度量,因而无法用于排序(ranking)任务。本文提出了一种新的基于遗传算法的数据挖掘方法,在产生分类规则的同时,对分类的可能性进行度量。实验证明该算法是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号