首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
为了计算泥水盾构开挖面前泥浆渗透地层的距离,基于泥浆渗透不伴生泥膜的假设,提出改进模型来分析不同泥浆的渗透距离. 结果表明:在泥浆渗透时间小于20 s的情况下,与Xu模型相比,改进模型的最大精度提高6%,且无须泥浆渗透试验. 在不考虑泥膜的情况下,纯膨润土泥浆的最大渗透距离为5.8~6.3 m;添加高分子材料的膨润土泥浆最大渗透距离为0.3~1.6 m,是纯膨润土泥浆的5%~25%;羧甲基纤维素钠对泥浆的改性效果最好. 微透水泥膜的形成时间为3.2~5.0 s. 考虑泥浆渗透伴生泥膜的情况,得到改进模型的修正系数为0.72~0.92. 预测常用的泥浆渗透距离,当盾构刀盘切削周期为10 s时,泥浆渗透距离为2.3~6.3 cm,最大的渗透距离是一般盾构直径(6 m)的1.05%.  相似文献   

2.
为了研究泥膜对泥水盾构开挖面稳定性的影响,通过改进滤失试验研究泥水盾构动态泥膜的渗透特性,提出泥水舱泥浆密度的计算方法,获得时间与泥浆滤失量的关系曲线和泥膜的本构参数(孔隙比-渗透系数-压力的相互关系),推导动态泥膜平均厚度的计算公式. 由试验压力增长引起的泥膜孔隙比的减小,可以降低泥膜的渗透系数. CMC-Na对泥浆的改性效果最好. 添加高分子材料的泥浆形成的泥膜厚度变小,泥膜厚度与泥膜平均渗透系数存在正比关系. 在盾构掘进过程中,泥膜厚度会发生周期性变化,动态泥膜的周期时间取决于刀具的布局和刀盘的转速. 动态泥膜的平均厚度约为最大泥膜厚度的2/3.  相似文献   

3.
盾构隧道同步注浆浆液压力时空分布规律   总被引:3,自引:0,他引:3  
盾构隧道施工过程中同步注浆浆液压力变化对邻近管片结构内力分布有较大影响,为实现对注浆压力的精细化控制,保证盾构安全掘进,研究浆液压力的时空分布规律.在考虑浆液粘度和地层渗透系数时变性的基础上,统一了同步注浆过程中浆液填充、扩散与消散过程,得到了浆液压力沿管片环向与纵向分布的理论计算式.依托工程实例及浆液流变试验结果,建立数值模型,得到了浆液压力沿管片三维时空分布规律.研究表明:同步注浆过程中浆液固结及注浆压力的衰减对浆液压力分布影响较大.浆液粘度增大,浆液流动性与地层渗透系数逐渐减小,使浆液压力沿管片扩散及消散幅度减小,进而影响管片内力分布.考虑了浆液压力时空变化特性的计算模型使管片受力特征与现场实测结果更加接近.研究成果为精细化分析施工阶段管片受力提供了计算依据.  相似文献   

4.
顶管工程同步注浆是减小地层扰动和最终地层沉降的一种重要手段。为研究注浆压力与顶管工程最终地层沉降的关系,在实际工程中选择合理的注浆压力和注浆量以减小顶管法对周围地层的扰动,为顶管工程同步注浆技术改进提供理论和试验支持,本文首先从土体颗粒和膨润土分子的结构特征角度对地层和泥浆的互相作用及沉降机理进行分析,提出4个沉降阶段的理论假设;然后,使用岩土工程离心机和自主研制的顶管工程注浆模拟系统进行缩尺模型试验,模拟现场不同注浆压力下的顶管顶进,通过对各组试验沉降曲线对比分析,验证理论分析部分的结论;最后,将试验中的注浆压力等相关参数应用于苏州东汇公园顶管工程,并在现场布置沉降测点,发现现场监测数据规律与试验结果吻合,进一步验证了本文的结论。研究表明:注浆后的沉降可分为土体塌陷阶段、渗透失水阶段、泥皮形成阶段和补浆抬升阶段,其中:土体塌陷阶段时间短,沉降速度快;渗透失水阶段持续时间长,总沉降量大,为地层沉降的主要部分;泥皮形成阶段,膨润土分子在泥浆–地层接触面堆积形成泥皮,浆液不再大量向地层渗透,使得地层沉降大幅减缓;最后的补浆抬升阶段,泥浆的注浆压力作用于泥皮,对上覆土产生推力,产生沉降补偿作用。注浆压力和注浆量的大小对最终地层沉降的影响很大,过小的注浆压力和注浆量会增大土体塌陷和渗透失水造成的地层沉降,而过大的注浆压力产生的过度沉降补偿作用甚至会使地表隆起。选择合理的注浆压力和注浆量对于控制地层沉降至关重要且效果显著,可应用于现场各类顶管工程。  相似文献   

5.
采用泥水盾构施工,进行带压开仓时,通常采用泥膜闭气的方法来平衡开挖面后部的土水压力。这就需要在掌子面表面形成一层泥膜,从而达到闭气的目的。本文通过采用自制的泥膜闭气装置,在实验室内开展了不同压力差下形成泥膜的试验。试验表明,当形成泥膜时,泥浆消耗量随着压力差的增大而减小。  相似文献   

6.
为研究在矩形顶管施工中砂质土和黏性土两种地层条件下泥浆的扩散半径、减阻效果,通过自行设计的试验台架,设定不同的覆土压力及浆土混合比例,进行了模拟试验。结果表明,砂土地层泥浆灌注起始压力约为4/5覆土压力,且注浆压力与扩散半径均呈线性增长;黏性土地层中注浆起始压力约为2倍覆土压力,浆液的扩散形式为劈裂渗透,渗透扩散不均匀,泥浆套成形质量较差;纯触变泥浆形成的泥浆套最大摩阻系数为0.011 8,对应的摩擦角为0.68°,随着黏土含量增大,泥浆减阻效果降低;现场实测最大顶推力比理论最大顶推力约减少60%,应用效果良好。研究成果能够有效解决矩形顶管隧道施工阻力大、小间距隧道顶进施工对既有管节的影响大等问题,具有推广应用价值。  相似文献   

7.
双圆盾构隧道同步注浆扩散及环向压力研究   总被引:1,自引:0,他引:1  
假定双圆盾构盾尾注浆浆液为牛顿流体,并考虑到浆液粘度随时间变化的特性,提出双圆盾构的管片同步注浆的两阶段扩散机理。浆液首先在盾尾注浆孔附近呈球形扩散,继而沿着盾尾间隙范围内弧形扩散。推导了双圆盾构管片同步注浆的浆液扩散半径及其沿管壁的环向压力计算公式。  相似文献   

8.
顶管工程同步注浆是减小地层扰动和最终地层沉降的重要手段,为了研究注浆压力与顶管工程最终地层沉降的关系,从而在实际工程中选择合理的注浆压力和注浆量来减小顶管法对周围地层的扰动,为顶管工程同步注浆技术改进提供理论和实验支持。本文先从土体颗粒和膨润土分子的结构特征角度对地层和泥浆的互相作用以及沉降机理进行分析,提出了沉降四个阶段的理论假设,再使用岩土工程离心机和自主研制的顶管工程注浆模拟系统进行缩尺模型实验,模拟现场不同注浆压力下的顶管顶进,通过对各组实验沉降曲线对比分析,研究和验证理论分析部分的结论。最后将实验中的注浆压力等相关参数应用于苏州东汇公园顶管工程并在现场布置沉降测点,发现现场监测数据规律与实验结果吻合,进一步验证了本文的结论。研究表明:注浆后的沉降可分为土体塌陷阶段、渗透失水阶段、泥皮形成阶段和补浆抬升阶段四个阶段。土体塌陷阶段时间短沉降速度快;渗透失水阶段持续时间长总沉降量大,为地层沉降的主要部分;在泥皮形成阶段,膨润土分子在泥浆-地层接触面堆积形成泥皮,浆液不再大量向地层渗透使得地层沉降大幅减缓;最后在补浆抬升阶段,泥浆的注浆压力作用在泥皮上对上覆土产生推力,产生沉降补偿作用。注浆压力和注浆量的大小对最终地层沉降的影响很大,过小的注浆压力和注浆量会增大土体塌陷和渗透失水造成的地层沉降,而过大的注浆压力产生的过度沉降补偿作用甚至会使地表隆起,选择合理的注浆压力和注浆量对于控制地层沉降至关重要且效果显著,可应用于现场各类顶管工程。  相似文献   

9.
矿山钻井工程结束后会产生大量的废浆。对这些废浆能否用被用作为地面预注浆浆液进行了一些试验。钻井泥浆和地层注浆所用的浆液有着不同的性能要求,其材料组成也不完全相同,不能直接用于地层注浆。在实验室里,对钻井废弃泥浆和注浆粘土纯浆的相对密度、粘度、pH值和稳定性等物理性能进行了试验,表明二者的粘度和稳定性差别较大。向两种浆液中添加不同数量的水泥和水玻璃,对其粘度、凝胶时间、静切力、塑性强度和抗压强度等性能进行了对比试验和分析,研究结果表明,在添加一定量水玻璃和水泥后,钻井废浆的各种性能与粘土浆液比较接近,可用于地层注浆工程。  相似文献   

10.
滤过效应对悬浊液渗透注浆扩散具有重要影响,滤过系数为渗透扩散关键影响参数,现有研究多将该系数假定为常数,具有较大局限性。考虑渗流域内各组分质量守恒,引入线性滤过定律,采用颗粒沉积概率模型描述水泥颗粒在多孔介质内沉积吸附行为,建立了考虑渗滤效应的水泥浆液渗透注浆柱形扩散理论模型。基于一维渗透注浆试验过程信息,提出了柱形扩散理论模型参数反演确定方法。开展了三维渗透注浆柱形扩散模型试验,结合理论模型计算结果,对比分析了孔隙率及浆液压力时空变化规律,探讨了注浆速率及浆液水灰比对滤过机制影响规律,并对理论计算模型准确性进行了验证。结果表明,注浆速率越小,注浆口处孔隙率衰减量越大,同时孔隙率沿浆液扩散方向衰减越剧烈;浆液水灰比越小,孔隙率衰减越快,滤过效应越显著。与试验值对比,所建立模型孔隙率最大计算误差小于12%,注浆压力最大计算误差小于14.2%,所建立模型可较好地描述水泥浆液多孔介质柱形扩散过程。  相似文献   

11.
在盾构施工中,选用浆液配比时往往根据经验,造成浆液性质和地层不匹配,得不到理想的注浆效果。从浆液配比方面入手,采用单因素分析法,做变水头试验测出浆液的渗透系数,得到不同浆液配比时,浆液自身渗透性的变化规律,并进一步分析浆液与地层的匹配关系。试验结果表明,当浆液其它成分不变时,浆液自身的渗透性随水泥、粉煤灰、膨润土用量的增多而减小,随砂、减水剂用量的增多而增大。  相似文献   

12.
非均质断层破碎带注浆扩散机理   总被引:2,自引:1,他引:1  
断层破碎带是诱发塌方、突泥等地质灾害的重要构造因素。但是,针对断层治理的注浆理论与技术研究进展缓慢。结合断层岩体特征分析与注浆试验,开展断层破碎带注浆扩散过程与规律研究。首先,依托永莲隧道F2断层突水突泥灾害注浆治理工程,提取并分析断层岩体性质,划分岩体类型,建立注浆概念模型,将岩体划分为松散型、软弱型及密实型等三种介质。基于牛顿流体及土体一维压缩理论,分别建立三种介质注浆控制方程,分析介质结构特征与孔隙度、压缩性等物理性质,对注浆扩散过程的影响规律。结合注浆试验,研究了不同介质条件下,注浆过程中注浆压力、介质应力变化规律,基于浆脉分布情况,分析浆液由注入点向介质的扩散过程。理论分析与试验结果表明:非均质断层破碎带注浆扩散过程,可分为优势充填与劈裂扩散两个阶段,注浆压力变化曲线由缓慢上升至陡降的突跳点即两阶段分隔点;优势充填阶段主要发生在松散型与软弱型介质中,注浆压力上升慢,浆液出现集中扩散;劈裂扩散阶段主要发生在密实型介质中,注浆压力上升快,扩散范围与介质结构面数量正相关,与压缩模量、注浆速率负相关。针对松散型与软弱型介质形成的不良地质区,为达到优势扩散与治理效果,提出了定域注浆控制技术,并在永莲隧道突水突泥灾害治理工程中应用,取得了良好的注浆治理效果。  相似文献   

13.
为解决泥水平衡盾构施工中压滤泥饼废弃产生的环保问题,提出一种利用压滤泥饼调制泥浆改良砂层渣土的新方法。从泥浆的密度控制、稳定性控制和粘度控制三个方面,开展压滤泥饼调制泥浆试验,从流动性与渗透性角度,确定改良砂层渣土的适宜泥浆掺量。结果表明:压滤泥饼调制的泥浆密度宜在1.29~1.34 g/cm3之间,掺入泥浆质量3%~5%的钠基膨润土,泥浆具有较高的稳定性和粘度。掺入渣土质量6%~10%的调制泥浆,便能达到与使用纯膨润土改良渣土相近的效果,泥浆用量大为减少。所以利用压滤泥饼调制泥浆并运用于砂层渣土改良是可行的,是一个节能环保的新思路。  相似文献   

14.
破碎围岩锚注加固浆液扩散规律研究   总被引:1,自引:1,他引:0  
基于连续介质力学和渗流力学理论,运用渗透张量法得出浆液在破碎围岩中扩散的基本方程;并通过对实际锚注支护工程进行假设与简化,建立锚注加固系统浆液在包含正交裂隙组的围岩中渗透扩散的数学模型.在此基础上,运用COMSOL软件对锚注支护工程进行实时模拟,研究了不同注浆压力和不同注浆锚杆布置方式对浆液流动扩散规律的影响.结果表明:对于巷道锚注支护工程,合理的注浆压力约为1.0~4.0MPa,合理的钻孔间距约为浆液扩散半径的1.3倍左右.将研究成果用于祁南煤矿新掘大巷锚注支护设计,取得了良好的效果.  相似文献   

15.
为降低土压平衡盾构在复合地层中掘进时进行渣土改良的工程成本,以广州地铁21号线朱村至象岭区间为工程依托,通过对粉质黏土和砾砂不同比例组合的渣土进行颗粒分析,计算得到复合地层的粒径分布曲线,并结合室内试验和现场测试研究混合渣土的流动状态和渗透性。结果表明:当复合地层中含有粉质黏土层时,粗粒土层渣土流动状态和渗透性有较大的改善,添加少量的气泡或者膨润土泥浆,渣土状态即可满足盾构掘进的要求。粉质黏土层的含量在30%~70%之间时,渣土能够达到良好的塑性流动状态。粉质黏土层的含量超过70%时,存在结泥饼的风险。  相似文献   

16.
为明确建筑废弃泥浆泥水分离性能,提高泥浆泥水分离效率,选取有机、无机和复合3种化学絮凝方法,通过室内沉降柱、颗粒级配和扫描电镜试验,对比研究絮凝剂类型和投加量对泥浆泥水分离效果的影响及微观作用机理. 结果表明:有机和复合絮凝剂可有效促进快速泥水分离,有机絮凝剂按调理效果排序(根据上清液体积高低)依次为阴离子聚丙烯酰胺、聚丙烯酰胺、两性离子聚丙烯酰胺、阳离子聚丙烯酰胺和聚二甲基二烯丙基氯化铵,适宜投加密度阴离子聚丙烯酰胺的泥水分离效果最佳,分离泥浆中水的质量分数小于76.8%;无机絮凝剂的泥水分离效果则相对较差;氯化铁和阴离子聚丙烯酰胺联合投加可以提高泥浆调理效果,有效发挥絮凝剂的电中和及网捕-卷扫作用;絮凝剂通过吸附架桥作用使泥浆颗粒发生明显聚集现象,即细颗粒减少、团聚粗颗粒增加. 扫描电镜图显示:原始泥浆颗粒倾向于平行方式沉积,投加絮凝剂使得泥浆颗粒团聚、絮体结构更加致密,揭示了絮凝作用诱发建筑泥浆泥水分离过程的微观机理,为泥浆快速泥水分离技术提供数据支撑和理论依据.  相似文献   

17.
收集国内23个地区隧道施工引起的地面最大沉降实测数据,选取符合Peck公式的数值,利用反分析的方法获得地层损失率的取值,研究隧道施工引起地层损失率的分布规律以及影响因素,结果如下. 1)土压平衡(EPB)盾构、泥水平衡盾构、浅埋暗挖法施工引起的地层损失率平均值分别为0.96%、0.48%、1.20%,分布在0%~2.0%、0%~1.0%、0%~2.5%之间的概率分别为93.46%、84.83%、92.8%,泥水平衡盾构施工引起的地层损失率分布最集中;2)土压平衡盾构和浅埋暗挖引起的地层损失率基本上随着地层条件的变好而减小,泥水平衡盾构引起的地层损失率随着地层渗透系数的变小而减小;3)隧道埋径比与地层损失率的相关性较弱;4)土压平衡盾构不同注浆率下的平均地层损失率随着注浆率的增大,呈现先减小后增大的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号