首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study reports a novel strategy using ultrasound in supercritical CO2 for exfoliating graphite directly into single and few-layer graphene sheets. The mutually complementary characterizations of the as-exfoliated samples via atomic force microscopy, transmission electron microscopy and Raman spectroscopy indicate that the ultrasonic power greatly affects the number of layers and the lateral size of the graphene. Single-layer graphene with a lateral size of 50–100 nm and two-layer graphene with a lateral size of 0.5–10 μm are obtained using an ultrasonic power of 300 and 120 W, respectively. As-exfoliated graphene sheets heighten the electrochemical performance of LiFePO4 cathode materials, demonstrating graphene's remarkable electrical conductivity. The specific capacity of the LiFePO4/graphene composite cathode achieves 160 mAh/g and displays stable cycling for more than 15 cycles. This technique will enable cost-effective mass production of graphene sheets with good quality, and the as-exfoliated graphene will find wide applications, including lithium-ion batteries.  相似文献   

2.
As a novel technique, supercritical CO2 (SC-CO2) extraction enhanced by ultrasound was applied to the extraction of lutein esters from marigold and the extraction curves were described by Sovová model. The mass transfer coefficient in the solid phase (ks) increased from 3.1 × 10−9 to 4.3 × 10−9 m/s due to ultrasound. The effect of extraction parameters including particle size of matrix, temperature, pressure, flow rate of CO2, and ultrasonic conditions consisting of power, frequency and irradiation time/interval on the yield of lutein esters were investigated with single factor experiments. The results showed that the yield of lutein esters increased significantly with the presence of ultrasound (p < 0.05). The maximal yield of lutein esters (690 mg/100 g) was obtained for a particle size fraction of 0.245–0.350 mm, extraction pressure of 32.5 MPa, temperature of 55 °C and CO2 flow rate of 10 kg/h with ultrasonic power of 400 W, ultrasonic frequency of 25 kHz and ultrasonic irradiation time/interval of 6/9 s.  相似文献   

3.
Diamond particles 3–7 μm in size sustained in plasma in a high-dispersion state were coated with cobalt by magnetron sputtering. The relative concentration of cobalt in obtained powders was 2–3 mass. %. Sintering the diamond powders with the cobalt coating under the pressure of 8 GPa and the temperatures of 2000–2100 K resulted in the production of homogeneous specimens having the density of 3.6 ± 0.1 g cm 3. The produced diamond compacts demonstrated high values of the ultrasonic wave propagation velocity and elastic moduli.  相似文献   

4.
Nano-curcumin was coated by poly(lactic-co-glycolic acid) (PLGA) using a novel fluidization assisted supercritical anti-solvent procedure. PLGA solution was sprayed into supercritical CO2 media, in which nano-curcumin particles were fluidized by ultrasonic vibration. The influences of process parameters, such as solvent types, solution concentrations, CO2 flow rates, the ratio of PLGA to curcumin, and ultrasonic power on the particles size and the curcumin loading were investigated. Scanning electron microscopy, laser particle size analyzer, and differential scanning calorimetry were used to characterize as-produced samples in terms of the structure, morphology and particle size distribution. The PLGA-curcumin nano-capsules were obtained with the average size of 63 nm and the loading of 38%, under the ultrasonic power of 210 W, and with the average size of 40 nm and 36% loading, at the ultrasonic power of 350 W. In vitro studies prove that proposed method is successful in preparing sustained release systems.  相似文献   

5.
The particle sizes of the pharmaceutical substances are important for their bioavailability. The bioavailability can be improved by reducing the particle size of the drug. In this study, salicylic acid and taxol were micronized by the rapid expansion of supercritical fluids (RESS). Supercritical CO2 and CO2 + ethanol mixture were used as solvent. Experiments were carried out to investigate the effect of extraction temperature (318–333 K) and pressure (15–25 MPa), pre-expansion temperature (353–413 K), expansion chamber temperature (273–293 K), spray distance (6–13 cm), co-solvent concentration (ethanol, 1, 2, 3, v/v, %) and nozzle configuration (capillary and orifice nozzle) on the size and morphology of the precipitated salicylic acid particles. For taxol, the effects of extraction pressure (25, 30, 35 MPa) and co-solvent concentration (ethanol, 2, 5, 7, v/v, %) were investigated. The characterization of the particles was determined by scanning electron microscopy (SEM), optical microscopy, and LC–MS analysis.The particle size of the original salicylic acid particles was L/D: 171/29–34/14 μm/μm. Depending upon the different experimental conditions, smaller particles (L/D: 15.73/4.06 μm/μm) were obtained. The particle size of taxol like white crystal powders was reduced from 0.6–17 μm to 0.3–1.7 μm The results showed that the size of the precipitated salicylic acid and taxol particles were smaller than that of original particles and RESS parameters affect the particle size.  相似文献   

6.
Supercritical anti-solvent precipitation with enhanced mass transfer (SAS-EM) is used for the formation of particles of hydrocortisone (HC), an anti-inflammatory drug. This technique is similar to the supercritical anti-solvent process but uses a reflecting horn surface that vibrates at 20 kHz frequency, which enhances the mass transfer of the solvent to supercritical fluid anti-solvent, reducing the growth of the particles. Controllable sizes and morphologies of HC particles are obtained using the SAS-EM process. At a power supply of 0 watts (to ultrasonic transducer), HC fibers of an average length of ∼81 μm and an average diameter of ∼6 μm are obtained. Upon increasing the power supply to 120 watts, which enhances mass transfer, particles of average size as low as 180 nm are obtained. Intermediate particle size and morphology are easily obtained by adjusting the power supply to the desired intermediate value. The obtained powder is free of impurities and is mostly amorphous.  相似文献   

7.
《Polymer》2007,48(1):270-280
This paper investigates the properties and interfacial modification of blends of polylactide (PLA) and glycerol-plasticized thermoplastic starch (TPS). A twin-screw extrusion process was used to gelatinize the starch, devolatilize the water to obtain a water-free TPS and then to blend into the PLA matrix. The investigated TPS concentration ranged from 27 to 60 wt%. In the absence of interfacial modification, the TPS/PLA blend morphology observed through scanning electron microscopy was very coarse with TPS particles sizes between 5 and 30 μm. Interfacial modification was achieved by free-radical grafting of maleic anhydride (MA) unto the PLA and then by reacting the modified PLA with the starch macromolecules. Blends comprising MA-grafted PLA showed much finer dispersed phase size, in the 1–3 μm range and exhibited a dramatic improvement in ductility. The paper discusses the effects of two interfacial modification strategies on the blend morphology and tensile properties and investigates the compatibilization efficiency for glycerol plasticizer contents between 30 and 39 wt% and for starches from three different sources: wheat, pea and rice.  相似文献   

8.
We report on fast polishing of polycrystalline CVD diamond films by ultrasonic machining in a slurry with diamond particles. The material removal mechanism is based on diamond micro-chipping by the bombarding diamond particles subjected to action of an ultrasonic radiator. The treated samples were characterized with optical profilometry, SEM, AFM and micro-Raman spectroscopy. The developed method demonstrates the polishing rate higher than those known for mechanical or thermo-mechanical polishing, particularly, the surface roughness of 0.5 mm thick film can be reduced in a static regime from initial value Ra  5 μm to Ra  0.5 μm for the processing time as short as 5 min. No appearance of amorphous carbon on the lapped surface was revealed, however, formation of defects in a sub-surface layer of a few microns thickness was deduced using Raman spectroscopy. The polishing of a moving workpiece confirmed the possibility to treat large-area diamond films.  相似文献   

9.
Lecithin was isolated from squid viscera residues after supercritical carbon dioxide (SC-CO2) extraction at 25 MPa and 45 °C. The particle formation of squid lecithin with biodegradable polymer, polyethylene glycol (PEG) was performed by PGSS using SC-CO2 in a thermostatted stirred vessel. By applying different temperatures (40 and 50 °C) and pressures (20–30 MPa), conditions were optimized. Two nozzles of different diameters (250 and 300 μm) were used for PGSS and the reaction time was 1 h. The average diameter of the particles obtained by PGSS at different conditions was about 0.74–1.62 μm. The lowest average size of lecithin particle with PEG was found by the highest SC-CO2 density conditions with the stirring speed of 400 rpm and nozzle size of 250 μm. The inclusion of lecithin in PEG was quantified by HPLC. Acid value and peroxide value was measured after micronization of lecithin.  相似文献   

10.
《Fuel》2007,86(1-2):161-168
The filtration of the coal-burning fly ash using fluidized beds with silica sand of 770 μm under temperatures of 36, 300, 400, and 500 °C was studied. The variations of the outlet concentration and particle size distribution (PSD) with time were measured to evaluate the dynamic characteristics of the process. Experimental results showed that the overall collection efficiency decayed with the operation time, revealed the effect of the elutriation of fly ash on particle filtration. The collection efficiency rose when the temperature increased from 36 °C to 500 °C. The strong attrition at high temperature released more small particles than that at room temperature, increased the concentration of the particles less than 10 μm (PM10) at high temperature. The removal efficiency of the particles in a size of 4–7 μm, not the submicron particles, is the lowest because they are most easily elutriated from fluidized beds.  相似文献   

11.
It is shown that the hydration degree of CA is directly dependent on the fineness of CA-particles. Finer particles lead to an increased degree of hydration and also an increased hydration rate.The reaction of a sample with mainly coarse particles of CA (d50 = 50 μm) is characterized by a low hydration rate and only 34 rel.-% of CA dissolved after 22 h. Whereas in a very fine CA-sample (d50 = 4 μm) hydration starts delayed but then shows the highest hydration rate and a dissolution of 62 rel.-% CA. The behaviour is explained by the coverage of CA-particles with a dense hydrate layer of C2AHx and AHx. This reacted CA-rim is supposed to have the same thickness for different sized CA-particles. Optimization of Gauss distribution curves, which were applied to simulate a more realistic particle size distribution, leads to a reacted rim thickness of 1.3 μm until reaction is stopped.  相似文献   

12.
In Saharan areas of Algeria, sandstorms can damage vehicles windshields inducing incidental light diffusion that affects the driver's visibility. Vehicles technical controllers find some difficulties with damaged windshields. The control being made visually with the naked eye, it is therefore difficult to judge when a damaged windshield is no more valid to use. In this context, we studied the influence of the surface state of a soda lime glass on the scattering of a white light. The varying parameters considered are the projected sand mass, the opening of the light beam and the distance sample-receptor. By increasing the projected sand mass up to 200 g, the optical transmission falls from 91.6 to 13% and the roughness increases from 0.035 up to 2.27 μm and then tends toward a constant level. For the as-received state, the image obtained using a CCD camera presents a net boundary and the transmission profile shows a saturation plateau. By damaging the surface, the image boundary deforms and becomes diffuse. For the highly damaged states, the image become completely blurred and the transmission profile disappears. The variation of the transmission according to roughness shows an inflection point at T = 73% and Ra = 1.5 μm. This point seems to separate two domains: a transparent field (Ra < 1.5 μm) and a blur field (Ra > 1.5 μm). The visibility limit obtained in our tests conditions is estimated at about 73%.  相似文献   

13.
Spray dried agglomerates of Al2O3–ZrO2 (1% Y2O3) with 4 wt.% borosilicate glass were arc plasma sprayed and rapidly quenched into water. Because of the rapid quenching the particles <25 μm were mostly amorphous. After annealing 1 h at 1200 °C the scale of the microstructure of the particles was on the order 30 nm. Hot forging of this powder yielded dense specimens with the width of the ZrO2 phase still less than 100 nm. Since the particle size ranged from 5 to 25 μm and the scale of the particle microstructure was <100 nm, densification was controlled by creep of the particles rather than by the typical hot pressing mechanism of diffusion along the neck between particles to fill the pores. Thus, the scale of the microstructure controls densification rather than the particle size. These powders offer an alternate source for manufacturing nanostructured parts and should be more suitable for hot pressing or forging than nanoparticulate powders.  相似文献   

14.
This paper presents the development, laboratory and field evaluation of two personal particle samplers (PPS). Both samplers operate at a flow rate of 4 l min-1, and collect particles smaller than 1.0 and 2.5 μm in aerodynamic diameter, respectively, on 3.7 cm Teflon filters. In each sampler, particles larger than 2.5 or 1.0 μm are retained by impaction onto a coated porous metal disk, which minimizes particle bounce. Using the substrates without any coating results in a substantial reduction of the collection efficiency for particles larger than the 50% cutpoint of the sampler. Particle losses in each sampler are quite low (e.g., on the order of 10% or less) and do not depend significantly on aerodynamic particle diameter. Both samplers display sharp particle cut characteristics, with the ratio of the aerodynamic particle diameter corresponding to 84% collection efficiency to the 50% cutpoint being approximately 1.18 and 1.27 for the PM1 and the PM2.5 samplers, respectively. Field tests showed that the mass, sulfate and nitrate concentrations measured by the PM2.5 PPS and a collocated PM2.5 Personal Exposure Monitor (PEM) agreed within 10% or less. Such agreement, however, was not observed between the PM2.5 PPS and the Harvard/EPA Annular Denuder System (HEADS), with the HEADS nitrate concentrations being on the average higher by a factor of 2.1. The particle mass, sulfate and nitrate concentrations obtained with a modified MOUDI sampler collecting all particles smaller than 1 μm in aerodynamic diameter on a filter and the PM1 PPS were also in very good agreement (e.g., within 7% or less). The two personal particle samplers will be used in field studies in different locations of the U.S. to provide better estimates of human exposures to exclusively particles of the accumulation mode. (e.g., without incorporating the contribution of the coarse mode).  相似文献   

15.
Zirconia fine particles were prepared by ultrasonic spray pyrolysis (USP) and employed as a substrate for titanium/titania coating by ultrasonochemistry. The effects of several process factors on the characteristics of the prepared particles were investigated and the particles were then characterized by various techniques. This substrate was coated with various titanium concentrations (0.025–0.1 M) for two ultrasonication time periods (30 min, 2 h) by sonochemistry, and finally calcined at 1100 °C. Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size analysis (PSA), Fourier transformation infrared spectroscopy (FT-IR) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) comprised the techniques used to characterize them. The particles were prepared in a monodispersed spherical form with no interior cavity; their average size was shown to be 0.62 μm before calcination and 2.57 μm after calcination. The titania surface coating acted to partially stabilize the particles to a tetragonal phase. Based on the analytical results, the optimum conditions for preparing the particles were shown to be 7.5 wt% of titania as an initial solution concentration and 0.5 h of coating time.  相似文献   

16.
In this study, the preparation of montmorillonite (Mt)-polyvinyl alcohol (PVA) nanocomposites (MtPVAN), and the formation of corresponding Mt carbon nanocomposites with nanosheet and nanotube structures were investigated. MtPVAN was prepared by solution intercalation combined with the dispersion method of ultrasonic radiation (UR) and mechanical stirring (MS). XRD analysis showed that the MtPVAN with d001 at 2.16 nm were successfully obtained with optimum mass ratio of 1:1.5 (Mt:PVA) and solid content of 10%. Then, the Mt-carbon, nanocomposites (d001 = 1.56 nm) with sandwich structure was prepared by carbonizing MtPVAN at 400 °C in nitrogen atmosphere for 3 h; and Mt-carbon nanosheets or nanotubes with carbon content of 5.10% was obtained by exfoliating the sandwich-like Mt-carbon nanocomposites with further airflow pulverization process. The average diameter and the thickness of the Mt-carbon nanosheets was about 2 μm and 10 nm, respectively; while the diameter of the nanotubes was 7–80 nm. The mechanism of the formation and the structure evolution of the Mt-carbon nanocomposites were also discussed.  相似文献   

17.
The geopolymers were prepared from sodium silicate, metakaolinite, NaOH and H2O at SiO2:Al2O3:Na2O:H2O of 3.66:1:1:x, where x = 8–17, and curing temperatures of 70–110 °C. Since the bending strength of the geopolymers was highest (36 MPa) where H2O/Al2O3 = 9 and the curing temperature = 90 °C, these conditions were adopted. The porous geopolymers were prepared by kneading PLA fibers of 12, 20 and 29 μm diameter into the geopolymer paste, at fiber volumes of 13–28 vol%. The resulting paste was extruded using a domestic extruder, cured at 90 °C for 2 days then dried at the same temperature. The PLA fibers in the composites were removed by alkali treatment and/or heating. The highest capillary rise was achieved in the porous geopolymers containing 28 vol% of 29 μm fibers. The capillary rise of this sample, estimated by the equation of Fries and Dryer1 was 1125 mm.  相似文献   

18.
The influence of silicon carbide (SiC) particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics was investigated. ZrB2-based ceramics containing 30 vol.% SiC particles were prepared from four different α-SiC precursor powders with average particle sizes ranging from 0.45 to 10 μm. Examination of the dense ceramics showed that smaller starting SiC particle sizes led to improved densification, finer grain sizes, and higher strength. For example, ceramics prepared from SiC with the particle size of 10 μm had a strength of 389 MPa, but the strength increased to 909 MPa for ceramics prepared from SiC with a starting particle size of 0.45 μm. Analysis indicates that SiC particle size controls the strength of ZrB2–SiC.  相似文献   

19.
An Iranian clinoptilolite has been modified with MnO2 for the catalytic removal of Fe2+ cations from water in a batch slurry reactor. The modified zeolite was subjected to FESEM, XRD, WDX, XRF and specific surface area analysis. A correlation for the intrinsic catalytic reaction rate incorporating both Fe2+ and dissolved oxygen concentration as a function of reaction temperature has been presented. The effect of the modified zeolite aggregate particle size on the iron removal kinetics has been investigated. It was shown that for particles larger than 150 μm, diffusion through the mesopores of the zeolite aggregate is rate controlling. The effective diffusion coefficient through the particles at RT has been calculated as 2.3 × 10?6 cm2 s?1. It is shown that liquid phase molecular diffusion within the mesopores is the dominating mass transfer mechanism.  相似文献   

20.
In the present paper the microstructure and domain structure in modified BaTiO3 with Pb and Ca as additives have been investigated using SEM technique. The (Ba,Pb)TiO3 and (Ba,Ca,Pb)TiO3 ceramics show a slight difference in grain size, being smaller in composites with Ca additives which acts as grain growth inhibitor. The domain configuration is almost the same. The small grain microstructure with tiny domains have been observed in specimen sintered at 1300°C and the average grain size is in the range 1–3 μm. For those specimens sintered at 1320°C the homogenous microstructure is also obtained with grain size around 2–4 μm. For both types of specimens, the single domain structure is associated with grain which size is lower than 2 μm. The banded domain structure could be observed in grains with size bigger than 3 μm. The bar shape grains and elongated grains together with some large region in microstructure are free of domain structure. The observed domain patterns reveal mainly the straight domain boundary lines with 90° domains walls. The wall thickness ranged from 0·03 μm to 0·15 μm, while the domain width is in the range of 0·1 μm–1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号