首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article presents a numerical investigation of convective heat transfer from a rotating cylinder with cross-flow oscillation. A finite element analysis using Characteristic Based Split method (CBS) is developed to solve governing equations involving continuity, Navier–Stokes, and energy equations. Dynamic unstructured triangular grid is used employing improved lineal and torsional spring analogy which is coupled with the solver by the Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the numerical code accuracy, simulations are conducted to study convective heat transfer past a rotating cylinder with cross-flow oscillation at Reynolds numbers of 50, 100, and 200. Different rotational speeds of the cylinder normalized by free stream velocity, in the range of 0–2.5 are considered at various oscillating amplitudes and frequencies and three different Prandtl numbers of 0.7, 6, and 20. Effects of oscillation and rotation of cylinder on the temperature and flow field, vortex lock-on, mean Nusselt number, and the pattern of vortex shedding are investigated in detail considering iso-temperature and iso-flux boundary conditions on the cylinder surface. It is found that similar to the fixed cylinder, beyond a critical rotating speed, vortex shedding is mainly suppressed. Also by increasing the non-dimensional rotational speed of the cylinder, both the Nusselt number and the drag coefficient decrease rapidly. However, in vortex lock-on region, the Nusselt number increases in a large amount.  相似文献   

2.
Free-stream flow and forced convection heat transfer across a rotating cylinder, dissipating uniform heat flux, are investigated numerically for Reynolds numbers of 20–160 and a Prandtl number of 0.7. The non-dimensional rotational velocity (α) is varied from 0 to 6. Finite volume based transient heatline formulation is proposed. For Re = 100, the reasons for the onset/suppression of vortex shedding at a critical rotational velocity is investigated using vorticity dynamics. At higher rotational velocity, the Nusselt number is almost independent of Reynolds number and thermal boundary conditions. Finally, a heat transfer correlation is proposed in the 2D laminar flow regime. Cylinder rotation is an efficient Nusselt number reduction or cylinder-surface temperature enhancement technique.  相似文献   

3.
The flow structure and heat transfer characteristics of an isolated square cylinder in cross flow are investigated numerically for both steady and unsteady periodic laminar flow in the two-dimensional regime, for Reynolds numbers of 1 to 160 and a Prandtl number of 0.7. The effect of vortex shedding on the isotherm patterns and heat transfer from the cylinder is discussed. Heat transfer correlations between Nusselt number and Reynolds number are presented for uniform heat flux and constant cylinder temperature boundary conditions.  相似文献   

4.
A numerical investigation has been carried out to analyze the effect of wall proximity of a triangular cylinder on the heat transfer and flow field in a horizontal channel. Computations have been carried out for Reynolds numbers (based on triangle width) range of 100–450 and gap widths (a/h) 0.5, 0.75 and 1. Results are presented in the form of instantaneous contours of temperature, vorticity, with some characteristics of fluid flow and heat transfer; such as time-averaged and instantaneous local Nusselt number, skin friction coefficient along bottom channel's wall, and drag coefficient. Results show that approaching triangular cylinder in the wall, removes vortex shedding and subsequently the heat transfer rate decreases at low Reynolds number. By decreasing the vortex shedding, drag coefficient decrease as triangular cylinder approaches the wall of the channel. The variation of vortex formation has a more significant suppression effect on the skin friction coefficient than the Nusselt number.  相似文献   

5.
Two-dimensional numerical simulation is performed to analyze the thermofluidic transport around a rotating square cylinder in an unconfined medium. The convective transport originates as a consequence of the interaction between a uniform free-stream flow and the flow evolving due to the rotation of the sharp-edged body. A finite volume-based method and a body-fitted grid system along with the moving boundaries are used to obtain the numerical solution of the incompressible Navier–Stokes and energy equations. The Reynolds number based on the free-stream flow is considered in the range 10 ≤ Re ≤ 200, and the dimensionless rotational speed of the cylinder is kept 0 ≤ Ω ≤ 5. Depending on the Reynolds number and the rotational speed of the cylinder, the transport characteristics change. For the range 10 ≤ Re < 50, the flow remains steady irrespective of the rotational speed. In the range 50 ≤ Re ≤ 200, regular low-frequency Kármán vortex shedding (VS) is observed up to a critical rate of rotation (Ωcr ). Beyond Ωcr , the global convective transport shows a steady nature. The rotating circular cylinder also shows likewise degeneration of Kármán VS at some critical rotational speed. However, the heat transfer behavior varies significantly with a rotating circular cylinder. Such thermofluidic transport around a spinning square in an unconfined free-stream flow is reported for the first time.  相似文献   

6.
Abstract

This work presents buoyancy-driven mixed convective flow and heat transfer phenomena of an isothermally heated horizontal elliptic cylinder in vertically upward unbounded flow of power-law type non-Newtonian nanofluids using ANSYS Fluent. The governing continuity, momentum and energy equations for the shear-thinning power-law nanofluids along with suitable boundary conditions are simultaneously solved within the limitations of Boussinesq approximation. The semi implicit method for pressure-linked equations algorithm along with the quadratic upstream interpolation for convective kinematics scheme for discretizing the convective terms in both momentum and energy equations are adopted. The ranges of parameters considered for this study are: volume fraction of nanoparticles, 0.005–0.045; aspect ratio of elliptic cylinder, 0.5–2.5; and Richardson number, 0–40; and a representative Reynolds number of 20. The streamline patterns, surface pressure coefficient distributions, total drag coefficients, isotherm contours, and Nusselt numbers are presented for better understanding of heat transfer and flow phenomena around elliptic cylinders. Briefly results indicate that the total drag coefficient is found to increase with the increasing Richardson number whereas it decreases with the increasing volume fraction of nanoparticles. The average Nusselt numbers are found to increase with increasing Richardson number and increasing volume fraction of nanoparticles.  相似文献   

7.
In this study, the local convective heat transfer from a rotating finned cylinder to the surrounding air was evaluated using an infrared thermographic experimental set up. Solving the inverse conduction heat transfer problem allows the local convective heat transfer coefficient to be identified. We used the specification function method, along with spatio-temporal regularization, to develop a model of local convective heat transfer in order to take lateral conduction and 2D geometry into account. This model was tested using rotational Reynolds numbers (based on the cylinder diameter and the peripheral speed) between 4300 and 17 900. The local heat transfer on the fin surface was analyzed to determine the influence of the rotational Reynolds number and the influence of the height and spacing of the fins. In this paper, we propose an efficiency definition that allows the optimal geometrical configuration of the finned cylinder to be identified for the given operating conditions.  相似文献   

8.
9.
Synthetic and continuous water jets impinging onto an electrically heated circular cylinder were experimentally investigated. The slot nozzle width was 0.36 mm, the cylinder diameter was 1.2 mm, and the cylinder-to-nozzle spacing related to the slot width was 5–21. Two optical methods were used: qualitative laser-induced fluorescence (LIF) visualization and laser Doppler vibrometry (LDV) measurements. Simultaneously with the optical experiments, the overall convective heat transfer from the circular cylinder was evaluated. The LDV quantified the velocity of the oscillating piezo-driven diaphragm at frequencies from 30 to 68 Hz. A majority of the study was performed at the near-resonant frequencies from 46 to 49 Hz. For all investigated jets, the Reynolds numbers based on the nozzle width ranged from 36 to 171. The LIF visualization revealed a dominant flow separation occurring on the windward cylinder side. This result is attributed to the effect of the miniscales, a relatively small ratio of the nozzle width to the cylinder diameter, and low Reynolds numbers. An increase in the Reynolds number changes the flow pattern from a steady jet-flow separation to a vortex shedding wake-flow regime. The heat transfer experiments were validated in a natural convection regime. An enhancement of the average Nusselt numbers by 4.2–6.2 times by means of the synthetic jets was quantified by comparison with the natural convection regime. A correlation for the average Nusselt number was proposed for both the continuous and synthetic jets.  相似文献   

10.
The effect of aiding/opposing buoyancy on the two-dimensional upward flow and heat transfer around a heated/cooled cylinder of square cross section is studied in this work. The finite-volume-based commercial computational fluid dynamics (CFD) software FLUENT is used for the numerical simulation. The influence of aiding/opposing buoyancy is studied for Reynolds and Richardson numbers ranges of 50 to 150 and –1 to 1, respectively, and the blockage parameters of 2% and 25%. The flow exhibits unsteady periodic characteristics in the chosen range of Reynolds numbers (except for Reynolds number of 50 and blockage parameter of 25%) for the forced convective cases (Richardson number of 0). However, the vortex shedding is observed to stop completely at some critical value of Richardson number for a particular Reynolds number, below which the shedding of vortices into the stream is quite prominent. Representative streamlines and isotherm patterns for different blockage parameters are systematically presented and discussed. The critical Richardson and average Nusselt numbers are plotted against the Reynolds and Richardson numbers, respectively, to elucidate the role of thermal buoyancy on flow and heat transfer characteristics. It is observed that the vortex shedding frequency (Strouhal number) increases with increased heating and suddenly reduces to zero at the critical Richardson number. The critical Richardson number is again found to increase with Reynolds number for a particular blockage ratio, and the higher the blockage ratio, the less is the critical Richardson number. The results obtained from the commercial solver are extensively validated with the available numerical results in the literature and an excellent agreement is observed.  相似文献   

11.
12.
The present experimental investigation relates to the convective heat transfer determination around annular fins mounted on a rotating cylinder with air crossflow. The mean convective heat transfer coefficient can be identified by solving the inverse conduction heat transfer problem during the fin cooling process. We used an inverse method, based on the mean squared error, to develop a model of mean convective heat transfer, taking lateral conduction into account. Tests were carried out for rotational Reynolds numbers Reω between 2150 and 17,200, air crossflow Reynolds numbers ReU between 0 and 39,600, and fin spacings u in the range 10 mm to ∞, u = ∞ corresponding to the single disk case. For each fin spacing, the relative influences of the rotational and airflow forced convections on the heat transfer were analyzed and correlations of the mean Nusselt number on the fin, relative to both Reynolds numbers, are proposed. Moreover, an efficiency definition, that allows optimal geometrical configurations of the finned cylinder to be identified for the given operating conditions, is proposed.  相似文献   

13.
A numerical simulation is performed to characterize the mixed convective transport in a three‐dimensional square lid‐driven enclosure with two rotating cylinders. The top wall is moving in the positive x‐direction, and the bottom wall is at a higher fixed temperature compared with all other isothermal walls. Both cylinders are rotating in its own plane about their centroidal axis. On the basis of rotation of both cylinders in clockwise or counter‐clockwise directions, four rotational models are studied. Various controlling parameters considered in the present study are Grashof number (10 3 < Gr < 10 5), rotating speed of the cylinder (5 < ω < 50), and the Reynolds number based on top wall movement is fixed to 100. The effect of cylinder rotation on the heat transfer of bottom wall is reported with the help of streamlines, contour plots of z‐component of vorticity, averaged and local Nusselt number, ratios of secondary flow and drag coefficient. It is observed that the heat transfer at the bottom wall is substantially dependent on the rotational model and rotational speed of the cylinder.  相似文献   

14.
An experimental study of heat transfer in a radially rotating twin-pass trapezoidal-sectioned duct with two opposite walls roughened by 45° staggered ribs was performed. Two channel orientations of 0° and 45° from the direction of rotation were tested. At each Reynolds number of 5000, 7500, 10000, 12500, and 15000, local Nusselt numbers along the centerlines of two rib-roughened surfaces with five different heating levels were acquired at rotating numbers of 0, 0.1, 0.3, 0.5, 0.7, and 1. A selection of experimental results illustrates the isolated and interactive influences of convective inertial, Coriolis, and rotating buoyancy forces on local and centerline-averaged heat transfers. The isolated Coriolis force-effect improves heat transfer over two unstable surfaces of the rotating twin-pass channel. The rotating buoyancy effect undermines local heat transfer, but its influence is alleviated when the rotating number increases. At rotating number of 0.7 and 1, the rotating buoyancy force acting with counter-flow manner considerably impairs local heat transfer in the end-region of the first passage with radially outward flow. With the rotating numbers in the range of 0.1 to 1, the heat transfer differences between the two channels with orientations of 0° and 45° are in the range of 5–26%. As a strategic aim of the present study, heat transfer correlations are derived to evaluate the centerline-averaged Nusselt numbers over two rib-roughened surfaces that permit the individual and interactive influences of convective inertia, Coriolis force, and rotating buoyancy to be quantified. As the full-field spatial heat transfer variations in the present rotating channel are not measured, the local heat transfer results generated by the present study are limited to the locations measured.  相似文献   

15.
A micro-thermocouple is specially designed and employed to measure the temperature distribution in the boundary layer around a cylinder surface, and the influence mechanism of rotation on the convective heat transfer characteristics from a large diameter rotating isothermal cylinder has been experimentally investigated. The effect of rotation on the trailing vortex is observed and analyzed by using a schlieren apparatus. The results show that rotation has an obvious effect on the air flow and temperature distribution characteristics around the cylinder surface. There exists a worst convective heat transfer region which does not coincide with the trailing vortex region as previously reported.  相似文献   

16.
A numerical study of laminar two-dimensional natural convection heat transfer from a uniformly heated horizontal cylinder rotating about its center, and placed in an isothermal rectangular enclosure, is performed using a spectral element method. The physical aspects of the flow and its thermal behavior are studied for a wide range of pure natural convection to mixed convection at low and high rotational speeds of the cylinder. The computer program has been validated against experimental correlations available on pure natural convection of heated bodies in enclosures. The rotation of the cylinder has been found to enhance the heat transfer. At low ratios of Rayleigh number to the square of the rotational Reynolds number, Ra / Reω 2, the maximum temperature on the cylinder surface is decreased by as much as 25–35% from similar cases with fixed cylinders. At moderate values of Ra/ Reω 2, the thermal plume rising above the cylinder is shifted in the rotation direction and the angular shift decreases as Ra / Reω increases. The rotation produces more uniform temperature and shear stress distributions around the cylinder surface. At high Rayleigh numbers the increase in rotation reduces the cylinder mean Nusselt number by 2–10% as compared with the fixed cylinder.  相似文献   

17.
The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.  相似文献   

18.
A new analysis is presented for forced convection of power-law fluids past rotating slender cylinders with fluid suction/injection at the wall. After a suitable coordinate transformation to reduce the complexity of the governing boundary-layer equations, the resulting nonlinear coupled differential equations were solved with an implicit finite difference scheme. Of interest were the effects of transverse curvature, power-law viscosity index, the type of thermal boundary condition and the generalized Prandtl number on the local skin friction coefficient and Nusselt number of rotating cylinders with porous surfaces. In general, body spin enhances convection heat transfer and increases the skin friction coefficient. Fluid injection into the boundary layer reduces and suction increases the local skin friction group. Higher Prandtl numbers increase the local heat transfer group especially in the presence of fluid withdrawal. Dilatant fluids exhibit a distinctively different behavior with respect to the heat transfer group when compared to pseudoplastics. The two thermal boundary conditions yield quite similar results.  相似文献   

19.
Convective heat transfer inside a rotating cylinder with an axial air flow   总被引:4,自引:0,他引:4  
This article presents an experimental identification technique for the convective heat transfer coefficient inside a rotating cylinder with an axial airflow. The method consists in heating the outer face of the cylinder using infrared lamps, and acquiring the evolution of the external surface temperature versus time using an infrared camera. Heat transfer coefficients are identified via three methods. The first one is based on an inverse model, the second one assumes the wall of the cylinder as a thermally thin wall and the third one is based on an analytical method permitting to obtain the temperature field within the whole cylinder. The experiments were carried out for a rotational speed ranging from 4 to 880 rpm corresponding to rotational Reynolds numbers varying from 1.6×103 to 4.7×105 and an air flow rate varying from 0 to which corresponds to an axial Reynolds numbers ranging from 0 to 3×104. Correlations connecting the Nusselt number to the axial and rotational Reynolds numbers are also proposed.  相似文献   

20.
This paper demonstrates the vortex shedding process behind a heated cylinder in a cross-flow at low Reynolds numbers under the influence of thermal buoyancy. The simulations were performed using an SUPG-based finite element technique. The range of Reynolds numbers was chosen to be 10–45. The flow was steady in the absence of thermal buoyancy. The eddy length and the separation angle were computed for the steady separated flow in the above range of Reynolds numbers. The results were in agreement with those reported in the literature. The Nusselt number distribution around the heated cylinder was also computed in the above range of Reynolds numbers for forced convective flows. The results compared fairly well with available experimental results. The effect of superimposed thermal buoyancy in the same range of Reynolds numbers was studied for various Richardson numbers. The steady separated flows become unsteady periodic in the presence of superimposed thermal buoyancy. For the unsteady periodic flows, the Strouhal numbers were computed. The separation angles and average Nusselt number for such unsteady flows were found to vary with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号