共查询到19条相似文献,搜索用时 78 毫秒
1.
针对高浓度充填开采过程中输送管道容易出现堵塞、压力失稳等问题,开展了充填料浆流变试验,开发了简易管道压力监测系统,在故障高发管道所属区段设置了监测点,实现了管道压力实时监测,分析了管道压力与不同充填工艺参数间的关系,得到了料浆在管内输送过程中的绝对压力及其压力降。结果表明:相比与充填流量的弱相关性,距离钻孔底部200 m处的管内压力与充填浓度表现为强相关性,其随浓度的改变而变化,具有高灵敏性和即时性的特征;充填管道压力监测点的绝对压力及料浆在单位长度管道输送过程中的压力降均非定值,故压力预警值的设定需根据充填采场位置变化而动态调整。 相似文献
2.
3.
为了探究壁面滑移效应影响下的充填料浆管道输送阻力的变化特征,建立了考虑壁面滑移效应的管道输送模型,利用Comsol数值模拟软件分析了料浆浓度、管径及灰砂比对管道阻力损失的影响。研究表明:①模型计算结果的相对误差在合理范围内,该模型用来计算考虑壁面滑移效应的充填料浆管道输送阻力是可靠的;②考虑壁面滑移效应的情况下,各因素对管道阻力的影响程度依次为管径>质量浓度>灰砂比,管径增大,壁面剪切作用力减小,颗粒迁移运动变缓,滑移效应减弱,管道输送阻力降低幅度减小;③在不同浓度范围内料浆滑移层厚度的主控因素不同,导致输送阻力随浓度增大的幅度不同;④灰砂比较低时,管道输送阻力的增长速率较低,随着灰砂比增大,管道输送阻力快速增大。以冀东地区某矿山为研究背景进行了数值模拟,得到充填料浆管道输送的最佳参数为质量浓度66%、68%,灰砂比1∶8。 相似文献
4.
深入研究充填料浆管道输送特性,改进充填倍线的计算方法,总结充填料浆管道输送可靠性研究的最新成果,分析研究现状中存在的问题,提出合理的建议。结果对充填料浆管道输送理论研究具有参考价值,可以为该领域研究指明发展方向。 相似文献
5.
6.
高浓度全尾砂胶结充填采矿法在地下黑色金属矿山中应用广泛,高浓度全尾砂胶结充填料浆管道输送技术是研究该采矿方法的重要内容。以吴庄铁矿高浓度全尾砂胶结充填开采为背景,根据该矿山需要达到的充填能力,选择内径为90 mm、113 mm和122 mm的充填管道,采用双精度流体力学软件fluent-2ddp研究高浓度全尾砂料浆在充填管道内的流动状态。根据矿体的赋存状态、矿山生产规模和充填料浆的性质,构建管道输送系统数值模型。设定管道入口和管壁的边界条件,进行料浆输送过程的数值解算,分析解算结果。研究结果表明,与90 mm和122 mm管道输送相比,113 mm管道输送料浆的压力损失和流速最合理;料浆在弯管内侧流速骤增,且显著大于外侧;料浆流速在管道断面上近似抛物线分布,最大流速位于管道中心的上方。 相似文献
7.
采用计算流体动力学 CFD软件,依据三山岛金矿井下的管路布置情况,建立了大型三维数值计算模型.设置料浆的灰砂比为1∶5,质量浓度分别为68%、72%,以及是否添加低密剂等工况,开展数值模拟仿真.根据数值模拟结果,充填料浆质量浓度越高,管道压力也越大.最大管道压力出现在-960m 中段,最小管道压力出现在-330 m 中段,数值模拟规律与现场实际相符.与不加入低密剂的对照组相比,加入低密剂后,当灰砂比为1∶5,质量浓度分别为68%、72%时,管道压力降幅分别为18.72%、18.97%,说明在充填料浆中加入低密剂能够降低管道压力,且管道压力的降低幅度满足了预期目标. 相似文献
8.
9.
10.
采用计算流体动力学数值模拟软件CFD,依据某金矿井下管道实际布置情况,遵循质量、能量以及动量守恒定律,建立了ANSYS三维数值计算模型。设定充填料浆的灰砂比为1∶5和1∶10,充填料浆质量浓度分别为68%、70%、72%,开展了充填输送管路的速度、阻力以及磨损数值模拟试验。结果表明:直管中速度最大处位于管道中心,而弯管中速度最大处位于管道外侧;随着充填料浆质量浓度增大,管道阻力损失也随之变大。当灰砂比为1∶10,充填料浆质量浓度为72%时,管道阻力损失为19.86 MPa;随着流速的增大,冲蚀磨损率也在逐渐增加,尤其当速率大于6 m/s后,冲蚀磨损率急剧增加,并且因为惯性力作用,冲蚀磨损主要发生在管道外侧部分,数值模拟规律与现场实际相符。 相似文献
11.
为了研究充填料浆在L型管自流输送时的偏移特性,将充填倍线、充填管径、质量浓度作为影响因素,进行了正交设计和计算流体力学(CFD)试验。研究发现:流速最大处偏移不一定最大;弯管处每个位置的最大流速皆随管径增大而减小,随质量浓度增大而增大;每个位置的偏移量均随管径增大而增大;影响最大偏移量的显著性和敏感性均为充填管径>充填倍线>质量浓度,其中充填管径为显著因素;最大偏移出现位置随充填管径增大下移,随质量浓度增大上移;最大流速出现位置随充填管径增大下移,随质量浓度增大上移,随充填倍线增大下移。建立了反映3因素下弯管最大偏移量的数学预测模型,并设计了4组验证试验,计算值与试验值差率均在2.5%以下,证实了该预测模型有效。 相似文献
12.
13.
14.
细粒尾矿充填料浆的流变性及充填能力研究 总被引:1,自引:2,他引:1
以某铁矿细粒尾矿为充填骨料,系统研究了不同浓度充填料浆的塌落度和流动性变化规律,测定了不同浓度充填料浆的粘度和屈服应力。研究结果表明,料浆浓度是影响料浆流动性的关键因素,料浆存在一个临界浓度,料浆浓度大于该临界浓度后,其流动性会急剧降低。对于所用细粒尾矿充填料浆而言,其临界浓度为63%左右;为了保证料浆的流动性,充填料浆浓度应控制在63%以下。采用宾汉姆流体理论,计算了不同浓度充填料浆的管道输送阻力损失及在不同管径下的输送能力。结果表明,在相同充填倍线下,料浆浓度和充填管道直径是影响充填能力和流动速度的主要因素;为保证不同浓度料浆的充填能力,应选择适宜的充填管道直径。 相似文献
15.
16.
湖南闪星锑业有限责任公司对浅部残矿进行回采,并采用高浓度的似膏体充填系统进行充填。通过从锡矿山选场选取尾砂充填体,在实验室测试其物理力学性质,同时测定不同浓度下不同配比的充填体的抗压强度及泌水率,得出适合矿山的充填材料配比为 1∶2∶8(水泥∶粉煤灰∶分级尾砂),质量浓度为70%~76%。通过充填管道输送参数计算,选用外径为0.114 m,壁厚为0.007 m的钢管,得出似膏体料浆的临界流速为0.97 m/s,充填料浆水力坡度为885.92 Pa/m,充填管道最大输送阻力为1.53 MPa,工业泵的启动压力2 MPa,得出泵的最小压力值为3.53 MPa,从而设计出适合锡矿山的似膏体充填系统,为矿区充填可靠性提供了保障。 相似文献
17.
充填采矿技术因其自身的特点,在矿山领域得到了大力推广,确定合理的充填料浆配比方案和充填系统管道输送技术参数,是确保整个充填系统能够安全、高效和稳定运行的重要前提。以唐山某铁矿为例,选择灰砂比1∶8的充填料浆为试验对象,以140 mm、160 mm、180 mm、200 mm、220 mm、240 mm、260 mm为试验管道直径,分别配比浓度为68%、70%、72%、74%的充填料浆,对充填料浆管道阻力损失影响因素进行分析,并对其进行优化。研究结果表明:管道阻力损失与管径呈反比例函数关系,料浆浓度越高,管道阻力损失越大;管径增大到240 mm和260 mm时,管道底部料浆流速过快,会加速底部管道磨损;为实现矿山生产中的采充平衡,建议该矿山输送管径为200 mm或220 mm,料浆输送浓度为70%。 相似文献
18.