首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Torstensen BE  Lie O  Frøyland L 《Lipids》2000,35(6):653-664
Triplicate groups of Atlantic salmon (Salmo salar L.) were fed four diets containing different oils as the sole lipid source, i.e., capelin oil, oleic acid-enriched sunflower oil, a 1∶1 (w/w) mixture of capelin oil and oleic acid-enriched sunflower oil, and palm oil (PO). The β-oxidation capacity, protein utilization, digestibility of dietary fatty acids and fatty acid composition of lipoproteins, plasma, liver, belly flap, red and white muscle were measured. Further, the lipid class and protein levels in the lipoproteins were analyzed. The different dietary fatty acid compositions did not significantly affect protein utilization or β-oxidation capacity in red muscle. The levels of total cholesterol, triacylglycerols, and protein in very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and plasma were not significantly affected by the dietary fatty acids. VLDL, LDL, and HDL fatty acid compositions were decreasingly affected by dietary fatty acid composition. Dietary fatty acid composition significantly affected both the relative fatty acid composition and the amount of fatty acids (mg fatty acid per g tissue, wet weight) in belly flap, liver, red and white muscle. Apparent digestibility of the fatty acids measured by adding yttrium oxide as inert marker, was significantly lower in fish fed the PO diet compared to the other three diets.  相似文献   

2.
Lipase-catalyzed incorporation of n−3 PUFA into palm oil   总被引:4,自引:0,他引:4  
Two immobilized lipases, IM60 from Rhizomucor miehei and QLM from Alcaligenes sp., were used as biocatalysts for the modification of the FA composition of palm oil by incorporating n−3 PUFA. Acidolysis and interesterification reactions were conducted with hexane as organic solvent, and the products were analyzed by using GLC. After a 24-h incubation in hexane, there was an average incorporation of 20.8% EPA and 15.6% DHA into palm oil, respectively, while the percentages of palmitic and oleic acids in palm oil decreased by 28.8 and 11.8%, respectively. Higher EPA and DHA incorporation was obtained when EPAX (fish oil concentrate high in n−3 PUFA) was used in the ethyl ester form (interesterification reaction) than in the free acid form (acidolysis) in the presence of Lipozyme (IM60 lipase. Lipase QLM was found to discriminate against EPA, and it showed slightly better catalytic activity for DHA in the free acid form than in the ethyl ester form. Generally, as the mole ratio of the acyl donor to TAG increased, the percentage incorporation of EPA and DHA increased; however, reactions catalyzed by Lipozyme IM60 did not show increases in the incorporation beyond a TAG/EPAX mole ratio of 3. When limitations due to mass transfer were not a factor, an increase in the reactant amount also gave an increase in the percentage incorporation of the n−3 PUFA. Palm oil containing EPA and DHA was successfully produced and may be beneficial in certain food and nutritional applications.  相似文献   

3.
Summary The mbocayá palm (Acrocomia totai Mart.) is one of a number of oil palms found in Latin America which is exploited for its pulp and kernel oils. Since the products of many of these palms are consumed locally or are exported to neighboring countries or Europe, they are little known in the United States. The mbocayá is one of these palms which has been exploited commercially for its kernel oil for about 50 years and for a lesser time for its pulp oil. The kernel oil is similar in composition to that of other American oil palms but is unique in being more unsaturated and having a lower melting point which clearly reflects the more temperate environment in which this palm thrives. Paraguay contains 6 to 7 million of these palms which produce annually an estimated 55,000 to 120,000 metric tons of fruit, only a part of which is processed for oil. In recent years production of kernel oil has varied between 2,000 and 2,700 metric tons and pulp oil between 500 and 1,100 metric tons, all of which has been consumed locally or exported to Argentina. Processing mbocayá fruit presents many difficulties not encountered with most oilseeds but which are similar to those encountered in processing most American oil palm fruits. This is the first comprehensive report in English on the mbocayá palm and its economic importance. Vegetable Oil Specialist, United States of America Operations Mission to Brazil, Foregin Operations Administration.  相似文献   

4.
O.J. Alamu  M.A. Waheed  S.O. Jekayinfa 《Fuel》2008,87(8-9):1529-1533
The finite nature of fossil fuel necessitates consideration of alternative fuel from renewable sources. Palm kernel oil (PKO) has been identified as a renewable resource from which biodiesel can be produced. The effect of ethanol–PKO ratio on PKO biodiesel yield was studied with a view to obtaining optimal feedstock ratio. Experiments were conducted for ethanol–PKO ratios 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25 under transesterification conditions of 60 °C temperature, 120 min reaction time and 1.0% KOH catalyst concentration. Results obtained gave 29.5%, 54%, 75%, 89%, 96%, 93.5% and 87.2% average PKO biodiesel yield for the respective feedstock ratios. This shows increase in biodiesel yield with ethanol–PKO ratio up to 0.2. Standard fuel test results of the PKO biodiesel are within biodiesel specifications.  相似文献   

5.
This work deals with the enzymatic transesterification of palm oil with methanol in a solvent-free system. Among the five lipases tested in the initial screening, lipase PS from Burkholderia cepacia resulted in the highest triglyceride conversion. Lipase PS was further investigated in a novel immobilized form by encapsulating within a biopolymer, κ-carrageenan. Using the immobilized lipase the production parameters of biodiesel from palm oil were optimized. The optimal conditions for processing 10 g of palm oil was: 30 °C, 1:7 oil/methanol molar ratio, 1 g water, 5.25 g immobilized lipase, 72 h reaction time and 23.7g relative centrifugal force. At the optimal conditions, triglyceride conversion of up to 100% could be obtained. The immobilized lipase was stable and retained 82% relative transesterification activity after five cycles. Liquid core lipase encapsulated in κ-carrageenan could be a potential immobilized catalyst for eco-friendly production of biodiesel.  相似文献   

6.
The transesterification of palm oil and methanol catalyzed by Br(φ)nsted acidic ionic liquids was investigated.Four eco-friendly Br(φ)nsted acidic ionic liquids were prepared and their structures were characterized by NMR,FT-IR and TG-DTG.The results demonstrated that [CyN1,1PrSO3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research.The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed,and the orthogonal test was investigated to seek the optimum reaction conditions,which were illustrated as follows:methanol to oil mole ratio of 24∶1,catalyst dosage of 3.0 wt% of oil,reaction temperature of 120 ℃,reaction time of 150 min,and the biodiesel yield achieved 98.4%.In addition,kinetic study was established for the conversion process,with activation energy and preexponential factor of 122.93 kJ·mol-1 and 1.83 × 1015,respectively.Meanwhile,seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity.The refined biodiesel met the biodiesel standard EN 14214.  相似文献   

7.
Previous research in rats and mice has suggested that γ-linolenic acid (GLA) derived from borage oil (BO: 23% GLA) may be an appropriate source for increasing levels of long-chain n−6 FA in the developing brain. Recently, transgenic technology has made available a highly enriched GLA seed oil from the canola plant (HGCO: 36% GLA). The first objective of this study was to compare the effects of diets containing equal levels of GLA (23%) from either BO or HGCO on reproduction, pup development, and pup brain FA composition in mice. The second objective was to compare the effects of the HGCO diluted to 23% GLA (GLA-23) with those of undiluted HGCO containing 36% GLA (GLA-36). The diets were fed to the dams prior to conception and throughout pregnancy and lactation, as well as to the pups after weaning. The behavioral development of the pups was measured 12 d after birth, and anxiety in the adult male offspring was assessed using the plus maze. The findings show that despite equivalent levels of GLA, GLA-23 differed from BO in that it reduced pup body weight and was associated with a slight increase in neonatal pup attrition. However, there were no significant effects on pup behavioral development or on performance in the plus maze. An increase in dietary GLA resulted in an increase in brain 20∶4n−6 and 22∶4n−6, with a corresponding decrease in 22∶6n−3. Again, despite their similar levels of GLA, these effects tended to be larger in GLA-23 than in BO. In comparison with GLA-23, GLA-36 had larger effects on growth and brain FA composition but no differences with respect to effects on reproduction and behavioral development. These findings suggest that the HGCO can be used as an alternative source of GLA.  相似文献   

8.
Novel organic–inorganic hybrid films were synthesised through the reaction of epoxidised castor oil (ECO) with γ-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). The amounts of GPTMS employed were sufficient to react with 25, 50 or 75% of the epoxy groups present in the ECO, whilst the mass proportions of ECO to TEOS varied from 90:10 to 70:30. Films were pre-cured at room temperature under an inert atmosphere, and subsequently submitted to thermal curing. Macro and microscopic properties of the films, including adhesion, hardness, swelling in toluene, microstructure (scanning electron microscopy) and thermal properties were determined as a function of the proportion of organic to inorganic precursor. Morphologic studies showed that the hybrid films were microscopically homogeneous when lower proportions of inorganic precursors were employed. Hardness and tensile strength increased, and swelling in toluene decreased, with the increase in the concentration of inorganic precursors. Good adhesion of the films to an aluminium surface was observed throughout the hybrid series.  相似文献   

9.
Interfacial properties are of critical importance to various separation applications. In heavy oil recovery, for example, a low oil–water interfacial tension (IFT) benefits the separation of heavy oil from their host rocks, which becomes problematic in the later stage of oil–water separation. CO2-responsive surfactants were investigated to enhance the overall heavy oil recovery by switching their interfacial activity to the desired state in each stage. The surfactants at interfacially active state greatly enhanced the separation of heavy oil from hosting solids, as demonstrated by measuring contact angle and oil liberation using a custom-designed on-line visualization system. Meanwhile, the resulting heavy oil-in-water emulsions could also be easily demulsified by the bubbling of CO2 gas, which switched off the interfacial activity of the surfactants. Furthermore, CO2-responsive surfactants could be partially recycled in process water to improve sustainability, making CO2-responsive surfactants to be promising chemical aids in heavy oil production and many other vital industries.  相似文献   

10.
The effect of α-tocopherol (αTOH) (50–2000 ppm), γ-tocopherol (γTOH) (100–2000 ppm), and δ-tocopherol (δTOH) (100–2000 ppm) on the formation and decomposition of hydroperoxides in purified fish oil triacylglycerols (TAG) was studied. The tests were conducted at 30°C in the dark. Purified fish oil TAG oxidized very rapidly with no apparent induction period. The relative ability of the tocopherols to retard the formation of hydroperoxides decreased in the order αTOH> γTOH>δTOH at a low level of addition (100 ppm), but a reverse order of activity was found when the initial tocopherol concentration was 1000 ppm. This dependence of relative antioxidant activity on tocopherol concentration was caused by the existence of concentrations for maximal antioxidant activity for αTOH and for γTOH. An inversion of activity, on the basis of hydroperoxide formation, was observed for αTOH at 100 ppm and for γTOH at 500 ppm, whereas the antioxidant activity of δTOH increased with level of addition up to 1500–2000 ppm. None of the tocopherols displayed any prooxidant activity. All three tocopherols strongly retarded the formation of volatile secondary oxidation products in a concentration-dependent manner. At concentrations above about 250 ppm there appeared to be a linear relationship between rate of consumption of αTOH and initial αTOH concentration, in accordance with the linear relationship observed between the initial rate of formation of hydroperoxides and the initial αTOH concentration. The rate of consumption of γTOH also increased with initial concentration, but to a lesser extent than for αTOH. At high levels of addition the rate of consumption of δTOH was independent of initial concentration, appearing to reflect the greater stability of this tocopherol homolog and participation in reactions with lipid peroxyl radicals only. Presented in part at the AOCS annual meeting in San Diego, California, April 2000.  相似文献   

11.
Industrial chemicals and materials are currently derived mainly from fossil‐based raw materials, which are declining in availability, increasing in price and are a major source of undesirable greenhouse gas emissions. Plant oils have the potential to provide functionally equivalent, renewable and environmentally friendly replacements for these finite fossil‐based raw materials, provided that their composition can be matched to end‐use requirements, and that they can be produced on sufficient scale to meet current and growing industrial demands. Replacement of 40% of the fossil oil used in the chemical industry with renewable plant oils, whilst ensuring that growing demand for food oils is also met, will require a trebling of global plant oil production from current levels of around 139 MT to over 400 MT annually. Realisation of this potential will rely on application of plant biotechnology to (i) tailor plant oils to have high purity (preferably >90%) of single desirable fatty acids, (ii) introduce unusual fatty acids that have specialty end‐use functionalities and (iii) increase plant oil production capacity by increased oil content in current oil crops, and conversion of other high biomass crops into oil accumulating crops. This review outlines recent progress and future challenges in each of these areas. Practical applications: The research reviewed in this paper aims to develop metabolic engineering technologies to radically increase the yield and alter the fatty acid composition of plant oils and enable the development of new and more productive oil crops that can serve as renewable sources of industrial feedstocks currently provided by non‐renewable and polluting fossil‐based resources. As a result of recent and anticipated research developments we can expect to see significant enhancements in quality and productivity of oil crops over the coming decades. This should generate the technologies needed to support increasing plant oil production into the future, hopefully of sufficient magnitude to provide a major supply of renewable plant oils for the industrial economy without encroaching on the higher priority demand for food oils. Achievement of this goal will make a significant contribution to moving to a sustainable carbon‐neutral industrial society with lower emissions of carbon dioxide to the atmosphere and reduced environmental impact as a result.  相似文献   

12.
Precipitation of asphaltene is considered as an undesired process during oil production via natural depletion and gas injection as it blocks the pore space and reduces the oil flow rate. In addition, it lessens the efficiency of the gas injection into oil reservoirs. This paper presents static and dynamic experiments conducted to investigate the effects of temperature, pressure, pressure drop, dilution ratio, and mixture compositions on asphaltene precipitation and deposition. Important technical aspects of asphaltene precipitation such as equation of state, analysis tools, and predictive methods are also discussed. Different methodologies to analyze asphaltene precipitation are reviewed, as well. Artificial neural networks (ANNs) joined with imperialist competitive algorithm (ICA) and particle swarm optimization (PSO) are employed to approximate asphaltene precipitation and deposition with and without CO2 injection. The connectionist model is built based on experimental data covering wide ranges of process and thermodynamic conditions. A good match was obtained between the real data and the model predictions. Temperature and pressure drop have the highest influence on asphaltene deposition during dynamic tests. ICA-ANN attains more reliable outputs compared with PSO-ANN, the conventional ANN, and scaling models. In addition, high pressure microscopy (HPM) technique leads to more accurate results compared with quantitative methods when studying asphaltene precipitation.  相似文献   

13.
In this paper, an oil wel production scheduling problem for the light load oil wel during petroleum field exploi-tation was studied. The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wel s in a given oil reservoir, subject to a number of constraints such as minimum up/down time limits and well grouping. The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost. Due to the NP-hardness of the problem, an improved par-ticle swarm optimization (PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately. Computational experiments on randomly generated instances were carried out to eval-uate the performance of the model and the algorithm's effectiveness. Compared with the commercial solver CPLEX, the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.  相似文献   

14.
The flow patterns and pressure gradient of immiscible liquids are still subject of immense research interest. This is partly because fluids with different properties exhibit different flow behaviours in different pipe's configurations under different operating conditions. In this study, a combination of oil–water properties (σ = 20.1 mN/m) not previously reported was used in a 25.4 mm acrylic pipe. Experimental data of flow patterns, pressure gradient and phase inversion in horizontal oil–water flow are presented and analyzed together with comprehensive comments. The effect of oil viscosity on flow structure was assessed by comparing the present work data with those of Angeli and Hewitt (2000) and Raj et al. (2005). The comparison revealed several important findings. For example, the water velocity required to initiate the transition to non-stratified flow at low oil velocities increased as the oil viscosity increased while it decreased at higher oil velocities. The formation of bubbly and annular flows and the extent of dual continuous region were found to increase as the oil–water viscosity ratio increased. Dispersed oil in water appeared earlier when oil viscosity decreased.  相似文献   

15.
An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7% for single fat and 3.5 + 3.5% for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60% CLA, so 7% and 3.5% dietary inclusions of CLA LUTA60 were equal to 4.2% and 2.1% CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ≤ 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ≤ 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybean oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPARγ gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other treatments (P ≤ 0.001), whereas no significant differences were found in adipose PPARγ gene expression between chickens fed with diets containing CLA, fish oil, soybean oil or the mixture of these fats. On the other hand, the PPARα gene expression in liver tissue was up-regulated in response to the dietary fish oil inclusion and the differences were also significant for both fish oil and CLA + fish oil diets compared to the diets with palm oil, soybean oil or CLA as the only oil source (P ≤ 0.001). In conclusion, the results of present study showed that there was a relationship between the adipose PPARγ gene up-regulation and abdominal fat pad deposition for birds fed with palm oil diet, while no deference was detected in n-3 and n-6 fatty acids, as well as CLA on PPARγ down regulation in comparison to a more saturated fat. When used on its own, fish oil was found to be a more effective fat in up-regulating hepatic PPARα gene expression and this effect was related to a less fat deposition in liver tissue. A negative correlation coefficient (-0.3) between PPARα relative gene expression and liver tissue fat content confirm the anti-lipogenic effect of PPARα, however, the change in these parameters was not completely parallel.  相似文献   

16.
The present paper is focused on exploiting Plackett–Burman design to examine the formulation effect of various chemical components content on the curing characteristics of oil palm ash (OPA)-filled acrylonitrile butadiene rubber (NBR) compound. The filled-NBR compound was prepared by conventional laboratory-sized two roll mill and cured using sulfuric system. Six independent variables such as content of zinc oxide, stearic acid, N-isopropyl-N′-phenyl-p-phenylenediamine, N-cyclohexyl-2-benzothiazole sulfenamide (CBS), sulfur, and even OPA filler were carried out to screen their significant effect on the curing characteristics of NBR compound. The scorch time, optimal cure time, minimum torque, and maximum torque were selected as a response. Results showed that the scorch time and the optimal cure time were significantly affected by CBS, whereas the minimum torque and maximum torque were significantly affected by OPA and sulfur, respectively, within the studied range. Among the chemical components under study, zinc oxide and stearic acid had the least effect on the curing properties of NBR compound. Analysis of variances for all factorial models demonstrated that the model was significant with P value <0.05 while the regularity (R 2) of all models was greater than 0.9. Lastly, the optimal chemical concentrations were predicted to acquire the optimal condition of the curing system for filled-NBR compound.  相似文献   

17.
Menhanden oil was purified by column chromatography to remove minor components. The effect of α-tocopherol (α TOH) (50–500 ppm) on the rate of formation of hydroperoxides in the original menahaden oil and in the purified menhaden triacylglycerol (TAG) fraction was studied at 30°C in the dark. An increase in the initial rate of formation of hydroper-oxides was observed at αTOH concentrations above 100 ppm in both substrates. The original menhaden oil oxidized more rapidly than the purified menhaden, TAG at all antioxidant levels tested, and the presence of minor components in the menhaden oil was found to contribute only to a limited extent to the peroxidizing effect of αTOH. The αTOH did not display any prooxidant activity at either of the concentrations tested when the control oil was the purified menhaden TAG. Addition of ascorbyl palmitate eliminated the initial peroxidizing effect of αTOH, and this emphasizes the participation of the α-toco-pheroxyl radical in the reactions causing an accumulation of hydroperoxides at high concentrations of αTOH. Presented in part at the Annual Meeting of the American Oil Chemists’ Society in San Diego, April 25–28, 2000.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号