首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the root cause failure analysis of a mechanical vapor recompressor (MVR) impeller used in a dairy processing plant. An impeller blade was thrown during commissioning after approximately 150 h of service. Visual examination of the blade’s fracture surface indicated that the crack growth mechanism was fatigue and this was confirmed by scanning electron microscope (SEM) examinations. A detailed investigation was commissioned to determine the source of the oscillatory stresses that must have been present to cause fatigue. A vibration analysis indicated large torsional oscillatory stresses, leading to fatigue, were induced by excitation of the 1st and 2nd torsional vibration modes of the MVR impeller and motor system. The excitation was induced by the control system for the motor variable speed drive (VSD).  相似文献   

2.
Centrifugal forces are generated by a spinning impeller, of magnitudes that create large stresses. Aerodynamic forces are also imparted on an impeller blade, which varies with time and position. These two forces play different roles during compressor events. Damage accumulated from these events results in the fatigue failure of impeller material and structure. Therefore, it is important to design an impeller against dynamic and fatigue failure. The finite element method has been used in the study of impeller fracture mechanics and is regarded as an important tool in the design and analysis of material and structures.  相似文献   

3.
This paper examines a failure analysis of the bolts from a failed joint between an impeller blade and a rotating assembly unit. The bolts failed due to poor thread manufacture and installation. Sharpened thread roots led to high stress concentrations that favored crack initiation. An oddly shaped thread profile allowed friction between mismatched thread surfaces. Poor installation procedures allowed for the possibility of overtightening to nucleate cracks in the head-to-shank interface (which had a smaller radius and therefore a higher stress concentration) and possibly also in the thread roots. Each of these influences contributed to crack initiation in the bolts. After cracks had formed, bending fatigue then propagated the nucleated cracks to final fracture. The failure analysis also recommended using bolts with rolled threads, which allow a more complete fit between mating male and female threads, and assuring that an appropriate preload is placed on bolts during installation.  相似文献   

4.
采用显微组织分析、扫描电镜分析和拉伸试验等方法对进料泵传动轴的断裂进行了失效分析。结果表明,泵轴断裂属疲劳失效,轴中段键槽处在制造过程中存在淬火裂纹是导致疲劳断裂的主要原因。  相似文献   

5.
Although the fatigue limit diagram is defined in principle for constant stress amplitude, it is often considered that fatigue failure would not occur, even in varying loading, if applied stresses were kept within the fatigue limit diagram. However, it was shown in the case of small‐notched specimens that fatigue failure occurred in some special cases of variable amplitude loading, even when all stress amplitudes were kept within the fatigue limit diagram. The cause of this phenomenon was examined using two‐step stress and repeated two‐step stress patterns in which the first step stress was chosen to be equal to the fatigue limit with zero mean stress and a mean stress was superposed on the second step stress. A non‐propagating crack was formed by the first step stress. This crack functioned as a pre‐crack for the second step stress with high mean stress. Consequently, fatigue failure occurred even when all stress amplitudes were kept within the fatigue limit diagram. It was an unexpected fracture caused by the interference effect of a non‐propagating crack and a mean stress change.  相似文献   

6.
Concrete hollow cylinders subjected to combined compression and torsion were used to simulate concrete airport pavements subjected to biaxial fatigue loading in the compression region. It was found that the increase in the compliance in the post-peak period is due to the damage evolution of the specimen. The static failure mechanisms was explained by fracture mechanics. Similar failure was observed in fatigue loading. It was found that with the crack growth as a parameter, the static response acts as an envelope for the fatigue failure response. The rate of the crack growth under fatigue loading follows a two-stage process: a deceleration stage followed by an acceleration stage up to failure. In the deceleration stage, the growth is governed by the R-curve of the specimen. In the acceleration stage, it is governed by the Paris Law. The previously proposed model in the biaxial tension region was extended to the biaxial compression region. In the biaxial compression region, static and fatigue behaviors under pure compressive loading were modelled in terms of inelastic displacement, rather than crack length.  相似文献   

7.
During a flight over sea, the right-hand trailing-edge flap (TEF) from an RAAF F/A-18 separated. Although the flap was not recovered, the mode of failure suggested that the outboard hinge lug was first to fail. A fleet-wide inspection of the TEF outer hinge lugs disclosed two other cracked hinge lugs. Examination of these cracks revealed that they had propagated as the result of a combination of corrosion and fatigue, in that the corrosive environment appeared to have accelerated the fatigue crack growth rate. Laboratory experiments indicated that, in a salt solution, the 7050 aluminium alloy from which the lugs were manufactured is susceptible to corrosion fatigue and that the observed cracking matched that on the cracked lugs: corrosion fatigue was therefore suspected to have been a contributing factor in the unexpected failure. Quantitative fractography on the fatigue cracks, combined with several assumptions and deductions, including information about the failure size of the crack gained from witness marks found on the monoball bearing of the failed TEF, led to an estimate of the fatigue crack growth rate. This crack growth rate and the short service life clearly indicated the limitations of the then-current non-destructive inspection (NDI) technique, and a more sensitive inspection method was developed to assist in the maintenance of adequate RAAF flying hours between inspections. This failure investigation provided an excellent example of how fractography, laboratory experiments and NDI can be combined to determine a possible cause of failure and to establish remedial measures for the fleet.  相似文献   

8.
基于流固耦合的导叶式离心泵强度分析   总被引:2,自引:1,他引:2       下载免费PDF全文
运用顺序耦合和双向流固耦合方法对导叶式离心泵进行了强度分析。通过顺序流固耦合方法,对叶轮进行了静应力强度分析,并与双向流固耦合方法得到的结果进行了比较。同时,对双向流固耦合结果中最大等效应力节点A和最大变形区域的节点B在叶轮旋转一周过程中的等效应力变化的时域图以及频域图进行了分析。结果表明,最大等效应力出现在叶轮前盖板、叶片背面和叶轮出口边的交界处(节点A);叶片进口边中部以及与前后盖板的交界处和叶片出口与后盖板的交界处这些地方有应力集中,可能发生强度破坏。后盖板出口处且正好在流道中部位置变形最大(节点B),可能发生刚度破坏。对于静力学分析,顺序耦合与双向耦合的结果基本一致。节点A的变形量小于节点B,但交变应力的幅值却远大于节点B。疲劳裂纹的扩展速度主要取决于交变应力幅值的大小,因此,在节点A处更易发生疲劳破坏。计算结果对导叶式离心泵叶轮结构优化设计提供了有效依据。  相似文献   

9.
Failure of a large ethylene‐reciprocating compressor was found to be due to fatigue growth of cracks in the crosshead of one of the cylinders, initiated at material defects near stress raisers. Total fatigue crack growth time was required in order to identify the cause of the failure. The applied stress field near the initiation sites and along fatigue path was estimated using FEM. The stresses were found to vary steeply and become partly compressive along a large part of the fatigue crack path. A weight function based on numerical method was developed, which was able to predict exactly the shape of the crack front during propagation. Fatigue crack initiation was traced to a disassembly 6 months before final failure. This failure was found to be jointly the result of non‐conformities in manufacture and maintenance.  相似文献   

10.
A fatigue test that simulates the step-wise crack propagation found in pipes in the field, and uses a standard compact-tension specimen, was employed to study and rank crack resistance of various pipe resins. The thermal history during compression moulding of the test specimens strongly affected fracture kinetics. It was found that crack-resistant properties of in-service pipe were best reproduced if compression-moulded plaques were fast cooled under load. This procedure was used to prepare specimens from candidate pipe resins for fatigue testing. The resins were compared in terms of discontinuous crack growth kinetics. The ranking based on resistance to fatigue crack propagation correlated with results of a standard PENT creep test. However, fatigue failure times were an order of magnitude less than the standard creep times. After comparing the initiation and failure times of the resins with detailed kinetics of step-wisse crack propagation, a simplified and rapid procedure is proposed which calls for evaluating only the first jump after initiation.  相似文献   

11.
对某发动机尾减系统尾减输入齿轮疲劳失效的原因进行了系统的分析。通过宏观检查、断口分析、金相检验以及受力分析等,确认了该齿轮的失效过程为:在大弯曲载荷作用下疲劳裂纹于锥齿中部齿根部位起始,裂纹初期沿径向呈15°左右的小角度疲劳扩展;齿部出现裂纹后,齿轮振动频率发生变化,进而导致齿轮出现节径型振动,使得裂纹逐渐沿径向疲劳扩展;出现径向裂纹后剩余齿由于截面减少以及起始部位已基本无渗碳层其强度较低等原因,导致剩余齿出现弯曲疲劳断裂。  相似文献   

12.
The fatigue crack growth response of Ti-based metal–matrix composites (MMCs) under single overloads was investigated. Extensive debonding and failure of bridging fibres were confirmed to be the major controlling mechanisms accelerating crack growth after peak overloads. Numerical predictions show that the fatigue damage severity is increased when the overload is applied at shorter crack lengths. Finally, extensive debonding and failure of bridging fibres was corroborated with a fatigue damage map to provide design guidelines.  相似文献   

13.
The present paper deals with the influence of non-metallic inclusions on fatigue life in the high cycle fatigue and the very high cycle fatigue regime. For that purpose, several castings of steel 42CrMo4 (AISI 4140, DIN EN 1.7225) were produced by using recently developed novel metal-melt filters. The specimens were tested in hot-isostatically pressed and heat treated condition. After fatigue failure every fracture surface was intensively investigated by scanning electron microscopy in order to define the type, the size, the chemical composition, the morphology and the location of the crack initiating discontinuity. Subsequently, Murakami’s √area model was used for the evaluation of the influence of non-metallic inclusions on the fatigue life. In the present investigation four common types of chemical compositions of crack initiating discontinuities were identified. Furthermore, four different internal failure types and their influence on the fatigue life in cast steel were investigated and described. Thus, the present contribution proposes a basic correlation determined from fatigue lives in case of various internal crack initiation types. The key parameters for fatigue life prediction in case of internal fatigue failure in the very high cycle fatigue regime are (i) the size of the crack initiating discontinuity, (ii) the inclusion depth and (iii) the crack initiating failure type.  相似文献   

14.
The failure of polystyrene in cyclic deformation has been examined and compared with the fracture mechanisms involved in simple tension. The fatigue response can be divided into three discrete life ranges. In the short and intermediate life regions, fracture occurs by the processes of craze formation, craze growth, crack nucleation and crack propagation in a manner analogous to tensile failure. The primary influence of reversed straining is manifest as an acceleration of the crack formation stage of failure. In long life (low stress) fatigue, failure modes dissimilar to the documented craze breakdown pattern of crack nucleation are noted.  相似文献   

15.
Frequent premature fatigue failure of construction machinery has spurred the demand for fatigue life prediction of such equipment. In this study, fatigue cracks were investigated in a concrete pump truck boom typically a high-strength steel plate welded box girder structure. The focus was two-tip corner cracks which frequently initiate at the weld toe between the top flange plate and the web plate because these are commonly observed in the field. A fatigue crack growth numerical approach for three-dimensional shell problems was proposed to simulate fatigue crack growth in cracked structures. Fatigue experiments were performed on a full-scale cracked boom to validate the effectiveness of this approach. The influence of the initial crack length was examined using the proposed approach. Numerical results revealed that variation in the initial crack length can affect the remaining fatigue life. For engineering convenience, an interpolation method was employed to determine the remaining fatigue life of a cracked boom with an arbitrary initial crack length. The comparisons between interpolation and numerical results demonstrate that the interpolation method can be used to guide repair decisions with reasonable precision.  相似文献   

16.
Lightweight magnesium alloys are increasingly used in automotive and other transportation industries for weight reduction and fuel efficiency improvement. The structural application of magnesium components requires proper welding and fatigue resistance to guarantee their durability and safety. The objective of this investigation was to identify failure mode and estimate fatigue life of ultrasonic spot welded (USWed) lap joints of an AZ31B-H24 magnesium alloy. It was observed that the solid-state USWed joints exhibited a superior fatigue life compared with other welding processes. Fatigue failure mode changed from interfacial failure to transverse-through-thickness crack growth with decreasing cyclic load level, depending on the welding energy. Fatigue crack initiation and propagation occurred from both the notch tip inside the faying surface and the edge of sonotrode indentation-footprints due to the presence of stress concentration. A life prediction model for the spot welded lap joints developed by Newman and Dowling was adopted to estimate the fatigue lives of the USWed magnesium alloy joints. The fatigue life estimation, based on the fatigue crack growth model with the global and local stress intensity factors as a function of kink length and the experimentally determined kink angle, agreed fairly well with the obtained experimental results.  相似文献   

17.
18.
发动机三级涡轮叶片断裂分析   总被引:1,自引:1,他引:0  
某发动机三级涡轮转子叶片在飞机赶快冰爬升时断裂,通过断口SEM观察,EDAX成分分析,叶片基材金相检验和硬度测试等分析了叶片的断裂原因和机制,结果表明,共振是叶片失稳断裂的直接原因,热疲劳萌生裂纹,高温腐蚀疲劳控制裂纹稳态扩展,材料冶金缺陷对叶片断裂过程有促进作用。  相似文献   

19.
An analysis of the fatigue crack growth and the corresponding residual life evaluation of the walking beam of an oilfield pumping unit are presented. Lifting lugs had been welded on the upper flange of the walking beam at the moment of assembling the machine. A crack nucleated at one of the weld toes and grew by fatigue up to the critical condition that led up to the instability of the waking beam after 10 years of operation, taking the equipment out of service and producing important economic losses to the operating company.As the company operates many units working in similar conditions, the estimation of fatigue residual life presents interest in order to define inspection intervals for examinations by non-destructive testing. In this way, any crack growing by fatigue will be detected and repaired, preventing the catastrophic failure of the component.The stress cycle at the failure zone was calculated and the mechanical properties of the walking beam steel were determined. With this information the final failure conditions were analyzed by using the failure assessment diagram. The fatigue residual life was then estimated by means of a model developed to consider the particular features of the crack path related to the beam geometry. Different operating situations were considered.Finally, based on the results obtained, an interval of 12 months between consecutive inspections of the examinations by non-destructive testing was proposed.  相似文献   

20.
Bayesian analysis was performed to estimate an appropriate value of the uncertain propagation rate of cracks that can be initiated at the wheelseat of a Shinkansen vehicle axle. In the analysis, fatigue life distribution obtained by numerical simulation that employed the crack propagation rate obtained from small specimens was used as the prior distribution. Then it was modified by the results of the fatigue test of full-scale models as additional information to obtain the posterior distribution. It was indicated that the variances of fatigue life distribution reduced through the analysis. By using the crack propagation rate obtained from the posterior fatigue life distribution, the failure probabilities of the Shinkansen vehicle axle in operation, that were calculated previously by using the crack propagation rate due to the experiment of small specimens were recalculated. The resulting probabilities of failure were almost the same as those that were not modified, but were slightly lower. Although the difference was not so significant, it was thought that more confident values of the failure probability were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号