首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of transition metals in Mn/TiO2 catalysts played significant roles in oxidative abstraction of hydrogen from adsorbed ammonia during the selective catalytic reduction (SCR). Thermodynamic calculation studies showed that the SCR performance was in accordance with the ammonia oxidation with transition metals, and the reaction tendency for the ammonia oxidation was decreased in the following order: CuO > Co3O4 > NiO > Fe2O3 > Cr2O3 > ZnO > La2O3 > CeO2 > ZrO2. In addition, Mn/TiO2 catalyst doped metal (Fe and Cu) oxides enhanced performance for NOx conversion, being approximately 100% at 453 K.  相似文献   

2.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

3.
《Catalysis communications》2007,8(8):1274-1278
Potassium nitrate catalysts supported on different oxides (CeO2, Ce0.5Zr0.5O2 and ZrO2) were prepared for diesel soot combustion. The ageing treatment was performed at 800 °C for 24 h and the catalytic activity was evaluated by a temperature-programmed oxidation technique. The results demonstrated that, compared with CeO2 and ZrO2, Ce0.5Zr0.5O2 presented good redox properties, a high surface area and available potassium-holding capacity at an elevated temperature. For aged K/Ce0.5Zr0.5O2, the combustion temperature of soot particle was 359 °C under tight contact conditions and 455 °C under loose contact conditions. Thus, ceria–zirconia mixed oxides were considered as good candidate supports for diesel soot oxidation catalysis.  相似文献   

4.
ZrO2 supports were prepared by different methods (conventional precipitation method, shortened as “CP”, and alcogel/thermal treated with nitrogen method, shortened as “AN”), and Cu/ZrO2 catalysts were prepared by impregnation method. The supports and catalysts were characterized by BET, XRD, TEM and TPR. The effects of the preparation methods of ZrO2 supports and the treatment conditions (calcination and reduction temperatures) of the catalyst precursors on the texture structures of the supports and catalysts as well as on the catalytic performances of Cu/ZrO2 in CO hydrogenation were investigated. The results showed that the support ZrO2-AN had larger BET specific surface area, cumulative pore volume and average pore size than the support ZrO2-CP. Cu/ZrO2-AN catalysts showed higher CO hydrogenation activity and selectivity of oxygenates (C1–C4 alcohols and dimethyl ether) than Cu/ZrO2-CP catalysts. Calcination and reduction temperatures of supports and catalyst precursors affected the catalytic performance of Cu/ZrO2. The conversion of CO and the STY of oxygenates were 12.7% and 229 g/kg h, respectively, over Cu/ZrO2-AN-550 at the conditions of 300 °C, 6 MPa.  相似文献   

5.
Pure oxides of ceria (CeO2) and zirconia (ZrO2) were prepared by precipitation method and a catalyst comprising of 25 mol% of CeO2 and 75 mol% of ZrO2 (25CZ) mixed metal oxide was prepared by co-precipitation method and also a catalyst with 25 wt% of 25CZ (25 mol% of CeO2 and 75 mol% of ZrO2) and 75 wt% SBA-15(25/25CZS) was prepared by precipitation–deposition method. Aqueous NH3 solution was used as a hydrolyzing agent for all the precipitation reactions. These catalysts were characterized by X-ray diffraction and nitrogen adsorption–desorption techniques for the confirmation of SBA-15 structural intactness. All these catalysts were found to be effective for the oxidative dehydrogenation of ethylbenzene (ODHEB) to styrene in the presence of CO2 and also it was observed that there was a sequential enhancement in the catalytic activity from individual oxides to mixed oxides followed by supported mixed oxide catalysts. Of the catalysts studied in this work, the supported 25/25CZS catalyst exhibited the superior activity, which was about 10–20 times higher than the activity of bulk single oxides in terms of turn over frequency.  相似文献   

6.
《Ceramics International》2017,43(17):15173-15178
LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode has been modified by incorporating ZrO2 nanoparticles to improve its electrochemical performance. Compared to the pristine electrode, the cycling stability and rate capability of 0.5 wt% ZrO2 modified-NCM622 have been improved significantly. The 0.5 wt% ZrO2 modified-NCM622 cathode shows a capacity retention of 83.8% after 100 cycles at 0.1 C between 2.8 and 4.3 V, while that of the pristine NCM622 electrode is only 75.6%. When the current rate is set as 5C, the capacity retention of the 0.5 wt% ZrO2-modified NCM622 is 10% higher than that of the pristine NCM622. Also, the rate capability of 0.5 wt% ZrO2-modified NCM622 is better than that of the pristine NCM622 at various C-rates in a voltage range of 2.8–4.3 V. The enhanced electrochemical performances of the ZrO2-modified NCM622 cathodes can be attributed to their high Li-ion conductivity and structural stability.  相似文献   

7.
The production of hydrogen (H2) with a low concentration of carbon monoxide (CO) via steam reforming of methanol (SRM) over Au/CuO, Au/CeO2, (50:50)CuO–CeO2, Au/(50:50)CuO–CeO2, and commercial MegaMax 700 catalysts were investigated over reaction temperatures between 200 °C and 300 °C at atmospheric pressure. Au loading in the catalysts was maintained at 5 wt%. Supports were prepared by co-precipitation (CP) whilst all prepared catalysts were synthesized by deposition–precipitation (DP). The catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM). Au/(50:50)CuO–CeO2 catalysts expressed a higher methanol conversion with negligible amount of CO than the others due to the integration of CuO particles into the CeO2 lattice, as evidenced by XRD, and a interaction of Au and CuO species, as evidenced by TPR. A 50:50 Cu:Ce atomic ratio was optimal for Au supported on CuO–CeO2 catalysts which can then promote SRM. Increasing the reaction time, by reducing the liquid feed rate from 3 to 1.5 cm3 h?1, resulted in a catalytic activity with complete (100%) methanol conversion, and a H2 and CO selectivity of ~82% and ~1.3%, respectively. From stability testing, Au/(50:50)CuO–CeO2 catalysts were still active for 540 min use even though the CuO was reduced to metallic Cu, as evidenced by XRD. Therefore, it can be concluded that metallic Cu is one of active components of the catalysts for SRM.  相似文献   

8.
Ultra high temperature ceramics (UHTCs) based composite ZrB2/20 vol.% Cu was prepared by spark plasma sintering (SPS) at 1650 C° for 3 min. The ablation behavior of composite irradiated for 2–20 s by 20 MW/m2 high-intensity continuous laser was investigated. The phase and microstructure evolution of ZrB2/20 vol.% Cu during ablation was demonstrated by XRD and SEM, respectively. The results reveal that no macroscopic damage but only one ablated layer with 40 μm in thickness is observed even after being ablated for 20 s. It implies that ZrB2/20 vol.% Cu composite exhibits good ablation resistance against high-intensity continuous laser. The continuous Cu in composite evaporates preferentially, which impacts on the following ablation behavior. The generated ZrO2 at the spot center shows different forms such as closely packed nano-ZrO2, micron ZrO2 or melting ZrO2 for different ablation time. The melting ZrO2 is helpful to promote the ablation resistance of ZrB2/20 vol.% Cu.  相似文献   

9.
We have employed resonant photoemission spectroscopy to investigate the phenomenon of hydrogen spillover on well-defined model Pt/ceria catalysts. On Pt/CeO2(1 1 1)/Cu(1 1 1), hydrogen spillover and reverse spillover give rise to reversible changes of the oxidation state of the surface cerium ions. These changes are monitored with highest sensitivity via resonant enhancement of Ce3+- and Ce4+-related features in the valence band photoemission spectra. The temperature regions are precisely determined in which specific processes such hydrogen spillover, Ce3+ transport, and reverse spillover are activated.  相似文献   

10.
The modification of Ni/CeO2/Al2O3 with Pt can make the activation by H2 reduction unnecessary, and this indicates that the Pt/Ni/CeO2/Al2O3 catalyst can be activated automatically by the compounds contained in tar. This can be explained by the enhancement of the Ni reducibility by the addition of Pt. The results of the temperature programmed reduction with H2 also support this enhancement. Furthermore, the addition of 0.1% Pt to Ni/CeO2/Al2O3 (4 wt% Ni, 30 wt% CeO2) enhanced the performance in the steam gasification of biomass, compared to Ni/Al2O3 and Ni/CeO2/Al2O3 in terms of low tar yield and high gas yield. This can be related to the Pt–Ni alloy formation indicated by the extended X-ray absorption fine structure analysis.  相似文献   

11.
《Catalysis communications》2007,8(11):1815-1819
We report for the first time the use of CexZr1−xO2 solid solutions as supports for Ru catalysts to be implemented in the catalytic wet air oxidation of 2-chlorophenol. Such catalytic systems appeared to be very efficient, even at low temperature (393 K) and low pressure (3 MPa), and exhibited a great advantage over Ru/CeO2 or Ru/ZrO2.  相似文献   

12.
Active sites responsible for the preferential oxidation of carbon monoxide were investigated using 4 wt.% Cu–CeO2 catalysts prepared by flame spray pyrolysis. Surface redox properties of the catalyst were assessed using a series of temperature-programmed reduction (CO, H2 and mixed) experiments, as well as operando infrared spectroscopy. It was demonstrated that CO and H2 react at identical surface sites, with CO2 formation proceeding simultaneously via three distinct Cun+–CO carbonyl species. The origin of high catalytic selectivity towards CO at below 150 °C stems from the carbonyl stabilization effect on the catalyst surface, preventing adsorption and subsequent oxidation of H2. Under non-selective conditions at higher temperatures, a gradual red-shift and loss of intensity in the carbonyl peak was observed, indicating reduction of Cu+ to Cu0, and the onset of an alternate redox-type oxidation mechanism where CO and H2 compete for the oxidation sites. These results for Cu–CeO2 suggest that improved low-temperature catalytic activity will only be achieved at the expense of reduced high-temperature selectivity and vice versa.  相似文献   

13.
The rate controlling step and the energy barrier involved in the hydrogen adsorption over Pt/MoO3 were studied. Rates of hydrogen adsorption on Pt/MoO3 were measured at the adsorption temperature range of 323–573 K and at the initial hydrogen pressure of 6.7 kPa. The rate of hydrogen uptake was very high for the initial few minutes for adsorption at and above 473 K, and reached equilibrium within 2 h. At and below 423 K, the hydrogen uptake still continued and did not reach equilibrium after 10 h. The hydrogen uptake exceeded the H/Pt ratio of unity for adsorption at and above 423 K, indicating that hydrogen adsorption involves hydrogen atom spillover and surface diffusion of the spiltover hydrogen atom over the bulk surface of MoO3 followed by formation of HxMoO3. The hydrogen uptake was scarcely appreciable for Pt-free MoO3. The rate controlling step of the hydrogen adsorption on Pt/MoO3 was the surface diffusion of the spiltover hydrogen with the activation energy of 83.1 kJ/mol. The isosteric heats of hydrogen adsorption on Pt/MoO3 were 18.1–16.9 kJ/mol for the hydrogen uptake range 2.4–2.8 × 1019 H-atom/g-cat. Similarities and differences in hydrogen adsorption on Pt/SO42?–ZrO2, Pt/WO3–ZrO2 and Pt/MoO3 catalysts are discussed.  相似文献   

14.
CeO2–CuO catalyst prepared by citric acid method was investigated for selective catalytic reduction of NO with NH3. The activity of the CeO2 catalyst was enhanced about 8–27% in the temperature range of 125–225 °C at a space velocity of 28,000 h−1 by the addition of Cu. It was found that the state of Cu species had great impact on the SCR performance of CeO2–CuO catalyst. Cu2+ can enhance the low temperature activity of SCR reaction, while CuO would promote NH3 oxidation before SCR reaction at high temperature, which would cause the decrease of its high temperature SCR activity.  相似文献   

15.
An effective approach of simultaneous coordinating etching and Pd nano coating technology is employed to prepare hollow Pd/CeO2 nanocubes as catalysts for the low-temperature oxidation of CO. The activities of Pd/CeO2 catalysts are higher than that of Pd supported on Al2O3, and the activity of 1 wt.% Pd/CeO2 can be enhanced obviously and its T90 (which denotes the temperatures at which a 90% conversion of the initial reactants is attained) is as low as − 5.6 °C. The intrinsic hollow nature as well as high porosity of the unique nanostructures of CeO2 support contributes greatly to the formation of large numbers of surface oxygen vacancies on the as-prepared Pd/CeO2 catalysts, and therefore it exhibits outstanding catalytic activity. This strategy method is simple, of low cost, which may shed light on a new avenue for fast synthesis of hollow cube-like nano functional materials for catalyst, drug delivery, energy storage and other new applications.  相似文献   

16.
CeO2 supports were prepared by a citrate (C) or a precipitation method (P) before deposition of vanadia by wet impregnation to obtain supported V/CeO2 catalysts. The V/CeO2-P catalyst is more active, reaching ≈ 100% NO conversion and N2 selectivity already below 225 °C at a space velocity of GHSV = 70,000 h 1. XRD, UV-vis-DRS, Raman, pseudo-in-situ-XPS and operando-EPR spectroscopy revealed that this is due to higher surface area and a more effective incorporation of V sites into the support surface, which keeps them in their active valence states + 5 and + 4 and prevents reduction to inactive V3 + as observed on V/CeO2-C.  相似文献   

17.
A synthesis method including Pt-induced oxidation and light irradiation-assisted routes has been developed to prepare a ZnO rod–CdS/reduced graphene oxide (RGO) heterostructure. Here, graphene oxide nanosheets are reduced and loaded onto the surface of Zn spheres using a redox process. ZnO rods are generated from Zn spheres by a Pt-induced oxidation method, and CdS nanoparticles are then loaded onto the surface of RGO via a light irradiation-assisted method. The ZnO rod–CdS/RGO heterostructure exhibits 3.8 times higher photocatalytic hydrogen generation rate from an aqueous solution containing Na2S/Na2SO3 than the reference ZnO rod–CdS heterostructure under simulated solar light irradiation. The optimal contents of RGO nanosheets and CdS nanoparticles are 2 wt% and 20 at.%, respectively.  相似文献   

18.
《Ceramics International》2017,43(10):7851-7860
This work reports the synthesis and characterization of mesoporous NiO/ZrO2-CeO2 composites. These materials are still being developed due to their excellent morphological and structural properties, especially for solid oxide fuel cells (SOFCs) anodes. A soft chemical route using a polymeric template was utilized to synthesize the samples. The structure after two different calcination processes at 400 °C and 540 °C was studied by X-ray diffraction and Rietveld refinement, before and after NiO loading. Nitrogen adsorption, scanning/transmission electron microscopy and small angle X-ray scattering revealed a nanocrystalline bi-phasic porous material. Temperature programmed reduction experiments showed higher Ni and Ce reduction values for samples calcined at 400 °C and 540 °C, respectively. Methane conversion values in the temperature range studied were similar for both calcination temperatures, showing 50% CH4 conversion around 550 °C and 80% around 650 °C. However, a sample calcined at 400 °C exhibited better morphological and textural properties leading to an enhancement in NiO and CeO2 reducibility that might be responsible for an improvement in oxygen surface exchange and gasification of carbon species in catalytic experiments.  相似文献   

19.
A series of Ru/Sm2O3–CeO2 catalysts were prepared by using a co-precipitation (CP) method and characterized by XRD, BET, SEM, H2-TPD-MS, H2-TPR and CO chemisorption. The activity test shows that ammonia concentration of the catalyst with 7% Sm is 13.4% at 10 MPa, 10,000 h 1, 425 °C, which is 21% higher than that of Ru/CeO2. Such high catalytic activity was due to three effects: the morphology changes of catalyst, electrodonating property of partially reduced CeO2  x to Ru metal and the property of easily hydrogen desorption derived from the presence of Sm3+ in ceria.  相似文献   

20.
《Ceramics International》2017,43(2):2291-2296
A Pd-YSZ cermet membrane that performs coupled operations of hydrogen separation from a mixed-gas stream and simultaneous hydrogen production by non-galvanic water-splitting, and have high sulfur tolerance is fabricated. It is proved that in H2S containing atmosphere the Pd-YSZ membrane has self-repairing capability, originating mainly from the conversion of Pd4S back to metallic Pd and SO2 by ambipolar-diffused oxygen obtained from water-splitting. The performance of membrane was analyzed at different temperatures in high H2S containing (0–4000 ppm H2S) mixed gas feed during the operation as a hydrogen separation membrane as well as during the coupled operation of hydrogen separation and hydrogen production. At 900 °C with the feed-stream having ≥2000 ppm H2S, the hydrogen flux was severely affected due to the formation of some liquid phase of Pd4S, resulting in the segregation of hydrogen permeating Pd-phase at the membrane surface. But at 800 °C, though the membrane was affected by the Pd4S formation in high H2S environment (up to 1200 ppm H2S), its self-repairing capability and additional hydrogen production by water-splitting is capable of maintaining the hydrogen flux around ~1.24 cm3 (STP)/min.cm2, a value expected by the same membrane while performing only the hydrogen separation function in H2S-free environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号