首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of Fenton process for the treatment of landfill leachate   总被引:18,自引:0,他引:18  
The treatment of landfill leachate by Fenton process was carried out in a batch reactor. The effect of operating conditions such as reaction time, pH, H2O2 to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, feeding mode, the type of polymer, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process was so fast that it was complete in 30 min. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H2O2 to Fe(II) molar ratio was 1.5, and organic removal increased as dosage increased at the favorable H2O2 to Fe(II) molar ratio. The efficacy of Fenton process was improved by adding Fenton's reagent in multiple steps than that in a single step. Furthermore, the stepwise addition of both hydrogen peroxide and ferrous iron was more effective than that of hydrogen peroxide only. Sludge settling characteristics were much improved with the addition of the proper polymer. Temperature gave a positive effect on organic removal.  相似文献   

2.
This study was conducted to improve struvite precipitation for NH4-N removal purpose in landfill leachate. For this purpose, we evaluated the effect of the feeding sequence of precipitating reagents (magnesium, orthophosphate, and buffering reagent) on NH4-N removal by forming struvite deposits. Struvite precipitation effectively proceeded by an addition of excess magnesium and phosphate sources followed by an addition of the buffering reagent, in which condition the local formation of inappropriate deposits or the contamination of the desired struvite was minimized. We also tested the effect of struvite addition as the seeding materials on NH4-N removal. Seed addition would increase the potential for the struvite crystal growth, which enhanced NH4-N removal performance in landfill leachate treatment.  相似文献   

3.
Municipal landfill leachate is being disallowed for biological treatment by some sewer authorities due to its recalcitrance and corrosiveness, and therefore physicochemical treatment may be needed. In this paper, hydrogen peroxide-enhanced iron (Fe(0))-mediated aeration (IMA) was studied as an alternative for the treatment of mature landfill leachate. Bench-scale Taguchi array screening tests and full factorial tests were conducted. Iron grade, initial pH, H(2)O(2) addition rate, and aeration rate significantly influenced both overall chemical oxygen demand (COD) removal and iron consumption. In the enhanced IMA-treated leachate at an initial pH of 8.2, COD was reduced by 50% due to oxidation and coagulation, a level almost equivalent to those obtained by Fenton treatment. Meanwhile, the 5-day biochemical oxygen demand (BOD(5))/COD ratio was increased from 0.02 to 0.17. In particular, the effect of initial pH became minor at H(2)O(2) addition rate greater than the theoretical demand for complete oxidation of organics by H(2)O(2). In addition, 83% of 300 mg/L ammonia nitrogen and 38% of 8.30 mS/cm electrical conductivity were removed when the initial pH was not adjusted. Based on these results, the process appears suitable for treatment of mature leachate.  相似文献   

4.
Fenton process has been widely used to treat landfill leachate. The "design of experiments" methodology was used to study the main variables affecting the Fenton process as well as their most relevant interactions. Results of two-level-factorial-design indicated that pH, COD, and the interaction of pH and COD gave negative effects, but Fe(II) dosage and H(2)O(2)/Fe(II) mole ratio showed positive effect, respectively. The quadratic model was derived based on the results of both two-level-factorial-design experiment and further runs of star points and center points. The response surface plots of quadratic model were obtained accordingly and the optimal conditions were derived from the quadratic model.  相似文献   

5.
MBR-NF工艺在垃圾渗滤液处理中的应用   总被引:3,自引:0,他引:3  
报告了采用膜生物反应器(MBR)-纳滤(NF)组合工艺处理高浓度垃圾渗滤液,该工艺充分发挥了MBR和NF单元的功能互补性,运行实践表明,对COD和氨氮的平均去除率均达99.5%,出水满足《生活垃圾填埋污染控制标准》的一级标准,运行费用(含折旧)为19.55元/m3,具有较明显的技术经济优势。  相似文献   

6.
超滤-纳滤膜处理垃圾填埋场渗沥液   总被引:5,自引:0,他引:5  
运用锯齿膜超滤加两级卷式膜纳滤分离系统处理垃圾渗沥液,系统出水无色透明,COD总去除率99%以上,氨氮总去除率90%以上,达到国家一级排放标准.结果表明:膜法处理垃圾渗沥液的技术是切实可行的.  相似文献   

7.
报告了采用膜生物反应器(MBR)-纳滤(NF)组合工艺处理高浓度垃圾渗滤液,该工艺充分发挥了MBR和NF单元的功能互补性,运行实践表明,对COD和氨氮的平均去除率均达99.5 %,出水满足《生活垃圾填埋污染控制标准》的一级标准,运行费用(含折旧)为19.55元/m3,具有较明显的技术经济优势。  相似文献   

8.
The microbial transformation of arsenic species in municipal landfill leachate (MLL) was investigated with the objective to highlight arsenic transformation in the landfill system. Across the 43 day incubation in MLL, more than 90% arsenate (iAs(V)) was found to reduce to arsenite (iAs(III)) within 20 days, while iAs(III) was comparably stable although a fraction of iAs(III) was temporarily oxidated to iAs(V) in the first 3 days. Transformation of monomethylarsonic acid (MMA(V)) to dimethylarsinic acid (DMA(V)) in MLL was slow with only 5% MMA(V) methylated to DMA(V) after 43 days incubation. A portion of DMA(V) and MMA(V) in MLL was demonstrated to transform into thiol-organoarsenic and monomethylarsonous acid (MMA(III)), which were identified to include dimethyldithioarsinic acid (DMDTA(V)), dimethylmonothioarsinic acid (DMMTA(V)) and monomethyldithioarsonic acid (MMDTA(V)) by HPLC-ICPMS and LC-ESI-MS/MS. The microbial formation of DMDTA(V), DMMTA(V) and MMDTA(V) is postulated to relate to hydrogen sulfide generated by bacteria in MLL. Differences in arsenic transformation in sterilised and non-sterilised MLLs demonstrate bacteria play a crucial role in arsenic transformation in the landfill body. This study reveals the complexity of arsenic speciation and highlights the potential risk of forming highly toxic thiol-organoarsenic and MMA(III) in the landfill environment.  相似文献   

9.
Ammonium removal from landfill leachate by anodic oxidation   总被引:2,自引:0,他引:2  
The feasibility of removing ammonium from landfill leachates by electrochemical oxidation was studied. Raw leachates and biologically/physico-chemically pretreated leachates from a municipal landfill site were treated. Boron doped diamond was used as anode and stainless steel as cathode, both electrodes with an area of 70 cm(2). The effects of the applied current density (15-90 mA cm(-2)), the initial ammonium concentration (480-2000 mg L(-1)), and the initial chloride concentration were experimentally studied. Total ammonium removal was obtained after 360 min of processing and almost half of the initial ammonium nitrogen was oxidized to nitrate. On the other hand, the concentration of chloride enhanced the rate of ammonium oxidation. In addition, the amount of N-NH(4)(+) transformed into N-NO(3)(-) decreased when additional chloride was provided.  相似文献   

10.
Nitrate removal from electro-oxidized landfill leachate by ion exchange   总被引:1,自引:0,他引:1  
Treatment of landfill leachates by electrochemical oxidation led to the complete removal of chemical oxygen demand and ammonium nitrogen. However, as result of the ammonium oxidation, the partial formation of nitrate ions was observed. Ion exchange technology was investigated as a polishing step in the treatment of landfill leachates. Removal of nitrate from aqueous solutions was studied using two selective anion exchangers: Purolite A 520E and Purolite A 300, under a fixed bed configuration. The following aspects of the ion exchange system were experimentally analyzed: (i) the influence of the presence of other competitive anions in solution, sulfate and chloride, during the loading step, (ii) the breakthrough point and resin saturation as a function of chloride concentration in the feed stream and, (iii) the efficiency of the regeneration step working with NaCl solutions at several concentrations. After a comparison of the experimental results, it was concluded that the resin Purolite A 300 showed a better behavior. Experimental analysis of the equilibrium isotherms made it possible to determine the equilibrium constant (K=3.21) and the maximum capacity (q(max)=183mgg(-1)), important parameters in the design of the treatment process.  相似文献   

11.
In this paper, the technical applicability and treatment performance of physico-chemical techniques (individual and/or combined) for landfill leachate are reviewed. A particular focus is given to coagulation-flocculation, chemical precipitation, ammonium stripping, membrane filtration and adsorption. The advantages and limitations of various techniques are evaluated. Their operating conditions such as pH, dose required, characteristics of leachate in terms of chemical oxygen demand (COD) and NH3-N concentration and treatment efficiency are compared. It is evident from the survey of 118 papers (1983-2005) that none of the individual physico-chemical techniques is universally applicable or highly effective for the removal of recalcitrant compounds from stabilized leachate. Among the treatments reviewed in this article, adsorption, membrane filtration and chemical precipitation are the most frequently applied and studied worldwide. Both activated carbon adsorption and nanofiltration are effective for over 95% COD removal with COD concentrations ranging from 5690 to 17,000 mg/L. About 98% removal of NH3-N with an initial concentration ranging from 3260 to 5618 mg/L has been achieved using struvite precipitation. A combination of physico-chemical and biological treatments has demonstrated its effectiveness for the treatment of stabilized leachate. Almost complete removal of COD and NH3-N has been accomplished by a combination of reverse osmosis (RO) and an upflow anaerobic sludge blanket (UASB) with an initial COD concentration of 35,000 mg/L and NH3-N concentration of 1600 mg/L and/or RO and activated sludge with an initial COD concentration of 6440 mg/L and NH3-N concentration of 1153 mg/L. It is important to note that the selection of the most suitable treatment method for landfill leachate depends on the characteristics of landfill leachate, technical applicability and constraints, effluent discharge alternatives, cost-effectiveness, regulatory requirements and environmental impact.  相似文献   

12.
The function of iron (ferric (Fe(III)) and ferrous (Fe(II))) in the hexavalent chromium (Cr(VI)) reduction mechanism by bacteria in municipal landfill leachate (MLL) was assessed. Evidence of an "electron shuttle" mechanism was observed, whereby the Cr(VI) was reduced to trivalent chromium (Cr(III)) by Fe(II) with the resulting Fe(III) bacterially re-reduced to Fe(II). Typically, investigations on this electron shuttle mechanism have been performed in an artificial medium. As MLL comprises an elaborate mixture of bacteria, humic materials and organic and inorganic species, additional complexities were evident within the cycle in this study. Bioavailability of the Fe(III) for bacterial reduction, availability of bacterially produced Fe(II) for chemical Cr(VI) reduction and hydrolysis of Fe(II) and Fe(III) become prevalent during each phase of the shuttle cycle when MLL is present. Each of these factors contributes to the overall rate of bacterial Cr(VI) reduction in this media. This work highlights the need to consider local environmental conditions when assessing the bacterial reduction of Cr(VI).  相似文献   

13.
This work shows an evaluation of treatments for the leachate produced at the Gramacho Municipal Landfill in Rio de Janeiro state, Brazil. This leachate has very peculiar characteristics, with a high salinity level and very low biodegradability (BOD(5)/COD of 0.05). A sequence of processes was employed in the treatment of this leachate. Initially, a physicochemical treatment was used, while the second stage consisted of application of ozone to improve the biodegradability of the leachate. The final stage comprised a biological treatment. The physical-chemical treatment led to COD and DOC removal levels of 40 and 25%, respectively, with the use of Al(2)(SO(4))(3). The sequence of treatments proposed brought good results, with an increase in the BOD(5)/COD ratio from 0.05 to 0.3 after ozonation. The toxicity tests performed using Brachydanio rerio and Poecilia vivipara showed that the toxicity of the leachate had hardly been reduced by ozonation. These results are in agreement with the fact that, despite the higher BOD(5)/COD ratio, the biological process did not present a good performance. The total average removal levels of COD and DOC achieved using the combined treatment were 73 and 63%, respectively, for an ozone dose of 3.0 gL(-1) by the leachate.  相似文献   

14.
Microbial fuel cell application in landfill leachate treatment   总被引:4,自引:0,他引:4  
The feasibility of using microbial fuel cells (MFCs) in landfill leachate treatment and electricity production was assessed under high levels of nitrogen concentration (6033 mg NL(-1)) and conductivity (73,588 μS cm(-1)). An air-cathode MFC was used over a period of 155 days to treat urban landfill leachate. Up to 8.5 kg COD m(-3)d(-1) of biodegradable organic matter was removed at the same time as electricity (344 m Wm(-3)) was produced. Nitrogen compounds suffered transformations in the MFC. Ammonium was oxidized to nitrite using oxygen diffused from the membrane. However, at high free ammonia concentrations (around 900 mg N-NH(3)L(-1)), the activity of nitrifier microorganisms was inhibited. Ammonium reduction was also resulted from ammonium transfer through the membrane or from ammonia loss. High salinity content benefited the MFC performance increasing power production and decreasing the internal resistance.  相似文献   

15.
16.
The aim of our research was to determine appropriate treatment technique for effective treatment of heavily polluted tannery landfill leachate. We have accomplished several treatment experiments: (i) aerobic biological treatment, (ii) air stripping at various pH, (iii) adsorption to activated carbon, (iv) coagulation-flocculation and (v) advanced oxidation process with Fe(2+)/H(2)O(2). Efficiency of each procedure was monitored by chemical analysis and changes in biodegradability and acute toxicity were also evaluated (Vibrio fischeri and Daphnia magna). Biological treatment of raw leachate was effective only for very diluted leachate (up to 6Vol.%). It has been confirmed that air stripping at pH 11.0 effectively removed volatile organics and ammonia for 33% and 84%, respectively and contributed to lower toxicity of the leachate. Fenton's oxidation was the most effective among all used treatment procedures. COD removal reached 86%, biodegradability has been increased and toxicity reduced. Adsorption to activated carbon increased BOD(5)/COD ratio from 0.18 to 0.56 and it removed 40% of organics. Coagulation and flocculation procedures with FeCl(3) were also very effective. At lowered pH and added flocculant treatment efficiency reached 50%. But no method alone was effective enough to meet effluent limits for release into local surface waters. Future work was focused on the study of different promising treatment schemes, especially combination of Fenton's oxidation and biological treatment.  相似文献   

17.
The aim of this study was to monitor and characterise internal leachate quality at a Finnish municipal solid waste landfill (Lahti, Kujala, in operation for approximately 50 years) to provide information about its horizontal and vertical variation as well as effects of leachate recirculation on leachate quality. The study area (approximately 4 h) of the landfill had 14 monitoring wells for leachate quality monitoring over a 2-year period. The leachate was monitored for COD, BOD, TKN, NH4–N, Cl, pH and electric conductivity. The results showed high horizontal and vertical variability in leachate quality between monitoring wells, indicating that age and properties of waste, local conditions (e.g., water table) and degradation and dilution processes have a marked effect on local leachate quality. The mean COD values (642–8037 mg/l) and mean BOD/COD ratios (0.08–0.17) from the different monitoring wells were typical of landfills in the methanogenic phase of degradation. The leachate in the monitoring wells was notably more concentrated than the leachate effluent used for leachate recirculation. In the landfill as a whole the effects of the leachate recirculation on leachate quality, although difficult to distinguish from those caused by other factors, appeared to be minor during the study period.  相似文献   

18.
This paper reports results of laboratory studies on two pretreatment methods, struvite precipitation using aeration with H3PO4 and Fenton oxidation. These methods utilized specific properties of the leachate: high magnesium content (172 mg L−1) for struvite precipitation and a high iron concentration (56 mg L−1) for Fenton treatment. Struvite precipitation (H3PO4, 700 mg L−1) removed 36% of NH3-N and 24% of SCOD. Fenton treatment (at pH 3.5) required 650 mg L−1 of H2O2 and removed 66% of SCOD. The effect of each pretreatment on the returned activated sludge (RAS) was evaluated using respirometry. Both methods reduced the inhibitory effect of the leachate and substantially increased biokinetic parameters. The BOD5/SCOD ratio increased from 0.63 for raw leachate to 0.82 (struvite) and 0.88 (Fenton). Estimation of capital and operational costs of the total leachate treatment indicated that aeration with struvite precipitation, followed by biological treatment, would be the preferred option.  相似文献   

19.
Two new applications for sequence treatment of mature (stabilized) landfill leachate, that is, cationic resin followed by anionic resin (cationic/anionic) and anionic resin followed by cationic resin (anionic/cationic), are employed and documented for the first time in the literature. Response surface methodology (RSM) concerning central composite design (CCD) is used to optimize each treatment process, as well as evaluate the individual and interactive effects of operational cationic resin dosage and anionic resin dosage on the effectiveness of each application in terms of color, chemical oxygen demand (COD), and NH(3)-N removal efficiency. A statistically significant model for color, COD, and NH(3)-N removal was obtained with high coefficient of determination values (R(2)>0.8). Under optimum operational conditions, the removal efficiency levels for color, COD, and NH(3)-N are 96.8%, 87.9%, and 93.8% via cationic/anionic sequence, and 91.6%, 72.3%, and 92.5% via anionic/cationic sequence, respectively. The experimental results and the model predictions agree well with each other.  相似文献   

20.
碟管式反渗透(DTRO)技术在垃圾渗滤液处理中的应用   总被引:1,自引:0,他引:1  
以深圳老虎坑、上海黎明、沈阳老虎冲、大辛垃圾填埋场渗滤液处理系统为例,介绍了一种新型的反渗透技术———碟管式反渗透(DTRO),它在处理垃圾渗滤液方面有着独特的优势,出水水质稳定且能达到国家生活垃圾填埋场污染控制标准中水污染物排放控制要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号