首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
Ni对Sn-0.7Cu焊料微观组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了添加微量Ni元素对Sn-0.7Cu焊料的力学性能、微观组织和断裂特性的影响.结果表明,微量的Ni可已细化焊料合金的微观组织,显著提高焊料的塑性,从而提高焊料的综合力学性能;但Ni含量太高,焊料的塑性反而受到弱化,合适的Ni添加量为0.133%,此时焊料的拉伸强度为35.7 MPa,延伸率为50%.  相似文献   

2.
Ce对SnAgCu系无铅焊锡力学性能的影响   总被引:6,自引:0,他引:6  
许天旱  王宇  黄敏 《电子工艺技术》2006,27(3):135-137,140
通过向Sn-3Ag-2.8Cu钎料合金中添加微量稀土Ce,利用扫描电子显微镜(SEM)研究了不同稀土含量对Sn-3Ag-2.8Cu合金的力学性能的影响,同时对显微组织进行了分析.实验结果表明,微量的Ce稀土可以显著提高Sn-3Ag-2.8Cu钎料的延伸率、延长其焊接接头在室温下的蠕变断裂寿命,尤其是当稀土的质量分数为0.1%时,其蠕变断裂寿命可以达到Sn-3Ag-2.8Cu钎料的9倍以上,当稀土的质量分数超过0.1%时,接头的蠕变断裂寿命呈下降趋势.综合考虑,最佳的稀土质量分数为0.05%~0.10%.  相似文献   

3.
研究了150℃时效0,200,500h对Sn3.0Cu0.15Ni/Cu界面组织结构的影响.结果表明:界面金属间化合物层由Cu6Sn5层和Cu3Sn层组成,质量分数为0.15%的Ni的加入会使IMC层最初变厚,但在时效过程中,热稳定性强的界面化合物(Cu,Ni)6Sn5的生成,会抑制Cu3Sn化合物层的生长;同时Ni的加入会降低Cu6Sn5颗粒的长大速度,并且随着时效时间的延长,Cu6Sn5颗粒的形貌呈多面体结构.  相似文献   

4.
针对高度为100~300μm的无铅钎料Sn-3.0Ag-0.5Cu微焊点,研究了等温热时效和焊点尺寸对其在100℃下拉伸强度的影响。结果表明,保持焊点直径不变时,高度为100,200和300μm微焊点未经热时效的平均拉伸强度分别为53.75,46.59和44.38MPa;热时效时间延长使微焊点内钎料合金显微组织明显粗化,导致焊点拉伸强度降低,前述三种高度的微焊点96h热时效后平均拉伸强度分别为44.13,38.38和33.48MPa,但96h热时效对IMC厚度无明显影响。  相似文献   

5.
采用扫描电子显微镜及万能材料实验机,研究分析了Sn-9Zn/Cu钎焊接头在150 ℃下长期时效过程中界面形貌及接头剪切性能的变化.结果表明:时效前,Sn-9Zn/Cu界面为薄且平直的Cu-Zn金属间化合物层(IMC).经过时效处理后,IMC层厚度明显增加,变得粗大不平,而且有Cu-Sn化合物生成.同时,Sn-9Zn/Cu钎焊接头的剪切强度明显下降,时效至1 000 h时剪切强度仅为初始的40.65%.时效过程中剪切断口的脆性断裂趋势逐渐增大.  相似文献   

6.
龙琳  陈强  廖小雨  李国元 《半导体技术》2012,37(1):42-46,73
研究了Sb和稀土化合物的添加对Sn3.0Ag0.5Cu无铅焊料焊接界面金属间化合物层生长的影响。研究结果表明,固态反应阶段界面化合物层的生长快慢排序如下:v(SAC0.4Sb0.1LaB6/Cu)v(SAC0.4Sb/Cu)v(SAC0.1LaB6/Cu)v(SAC/Cu)。计算各种界面IMC生长的激活能Q结果表明,Sn3.0Ag0.5Cu/Cu界面IMC生长的激活能最高,为92.789 kJ,其他焊料合金Sn3.0Ag0.5Cu0.4Sb0.1LaB6/Cu,Sn3.0Ag0.5Cu0.1LaB6/Cu和Sn3.0Ag0.5Cu0.4Sb/Cu界面IMC生长的激活能分别为85.14,84.91和75.57 kJ。在老化温度范围内(≤190℃),Sn3.0Ag0.5Cu0.4Sb0.1LaB6/Cu的扩散系数(D)最小,因而其界面化合物的生长速率最慢。  相似文献   

7.
本文通过透射电镜观察、差示扫描量热分析(DSC)和硬度测试等方法研究了6061铝合金在多级时效处理过程中力学性能和显微结构演变的规律.其中,T6I6热处理为先进行固溶处理,淬火后进行180℃预时效,然后在65℃中断时效,最后在180℃再次时效,120/T6I6热处理则将预时效温度改为120℃.结果表明,T6I6热处理不会明显提高合金的峰值硬度,合金强度与析出相类型、尺寸和分布有关系.120℃预时效后中断时效时继续形成GP区或β″前驱相,而180℃预时效后中断时效对显微结构的影响较小.120/T6I6的中断时效过程析出的主要是尺寸较小的GP区或β″前驱相,它们在再时效阶段不能成为析出相的形核点.T6I6在中断时效前GP区和β″前驱相基本全部析出.T6I6热处理和120/T6I6热处理均没有使峰值硬度明显增加,而且120/T6I6会拖延峰值时间.  相似文献   

8.
研究了熔炼制备的SnBi36Ag0.5无铅焊料于水冷、空冷、模冷三种方式冷却后,在应变速率为0.00067,0.00167和0.00333 s-1下的力学性能和断裂行为。利用X射线衍射仪(XRD)、光学金相显微镜(OM)、扫描电镜能谱(SEM)和万能材料试验机分别对合金的物相、显微组织、断口形貌和力学性能进行表征。结果表明,冷却速度增加使焊料脆硬富Bi相和Ag3Sn相得到细化,析出的富Bi颗粒减少。冷却速度越大、应变速率越小,合金的抗拉强度越低,断后延伸率越高。合金断口形貌逐渐由脆性断裂变为韧脆混合型断裂,韧窝的数量和面积逐渐增大。当冷却方式为水冷,应变速率为0.00067 s-1时,合金的延伸率有最大值78.58%,应变速率为0.00333 s-1时延伸率也能达到55.76%,通过水冷能明显改善合金的脆性。  相似文献   

9.
对不同温度下Sn-0.7Cu/Cu界面金属间化合物的生长进行了研究并对其拉伸性能进行了测试,计算了液态下Sn-0.7Cu/Cu界面IMC的扩散系数。研究结果表明,液态时效的过程中,界面Cu_6Sn_5晶粒尺寸逐渐增大,界面晶粒变得致密,Cu_6Sn_5晶粒表面产生新的凸起,并逐渐沿高度方向生长。液态时效下,界面IMC的生长受到扩散机制控制,其扩散系数高出固态时效2个数量级。随着时效时间的增加,焊点的抗拉强度先下降后趋于稳定,断裂方式由韧性断裂向解理断裂转变。  相似文献   

10.
以Sn-0.3Ag-0.7Cu(SAC0307)低银无铅钎料焊点为研究对象,在焊点凝固过程中施加2.3T匀强磁场,通过观察低银无铅焊点显微组织变化,揭示磁场对焊点凝固及固态扩散行为影响;利用Fe、Ni增强元素对比得出SAC0307在不同环境下的凝固和固态扩散行为。将焊点置于电流密度为3×10~3 A/cm~3的磁电耦合环境下,观察了磁电耦合条件下焊点的显微组织演变过程,并总结了磁场对焊点电迁移行为的影响。结果表明:静磁场条件下,焊点界面处IMC形态由扇贝状向针状转变;IMC倾向于向钎料内部快速生长;Fe、Ni的加入进一步促进IMC生长。  相似文献   

11.
The formation and growth of intermetallic compounds (IMCs) in lead-free solder joints, during soldering or subsequent aging, have a significant effect on the thermal and mechanical behavior of solder joints. In this study, the effects of a 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu (SAC) lead-free solder alloys on the growth of IMCs with Cu substrates during soldering and subsequent isothermal aging were investigated. During soldering, it was found that a 0.2wt.%Zn addition did not contribute to forming the IMC, which was verified as the same phase structure as the IMC for Sn-3.0Ag-0.5Cu/Cu. However, during solid-state isothermal aging, the IMC growth was remarkably depressed by the 0.2 wt.% Zn addition in the SAC solder matrix, and this effect tended to be more prominent at higher aging temperature. The activation energy for the overall IMC growth was determined as 61.460 and 106.903 kJ/mol for Sn-Ag-Cu/Cu and Sn-Ag-Cu-0.2Zn/Cu, respectively. The reduced diffusion coefficient was confirmed for the 0.2Zn-containing solder/Cu system. Also, thermodynamic analysis showed the reduced driving force for the Cu6Sn5 IMC with the addition of Zn. These may provide the evidence to demonstrate the depressing effect of IMC growth due to the 0.2wt.%Zn addition in the Sn-Ag-Cu solder matrix.  相似文献   

12.
In this study, bulk and thin-cast samples were produced with an identical Sn3.9Ag0.6Cu composition. The thin-cast material exhibited a much finer as-quenched microstructure than the bulk material with the intermetallic compound (IMC) phase restricted to a thin network. Both the bulk and thincast materials continually softened during room-temperature aging, while both materials initially softened and then subsequently hardened when aged at 120°C and 180°C. The thin-cast material was in all cases significantly softer than the bulk material, and responded to aging as if it were bulk material aged at a higher temperature. These results have significant implications for the elevated temperature application of Sn3.9Ag0.6Cu.  相似文献   

13.
The effects of isothermal aging on the microstructure and mechanical behavior of Sn-Bi/Cu solder joints are reported. Lap shear solder joints of eutectic Sn-Bi solder were aged for 3 to 30 days at 80°C and then loaded to failure in shear. Changes in the joint microstructure including interphase coarsening, intermetallic growth, and evolution of the intermetallic/solder interface are documented. The aging experiments reveal the segregation of the Bi-rich phase of the solder to the intermetallic/solder interface. The ultimate shear strength and ductility of the joints are reported at strain rates of 4.0 × 10−1 to 4.0 × 10−5 S−1 for 3 and 30 days aging. The strength of the joints decreases with strain rate for both aging conditions; the ductility is low and independent of strain rate for the joints aged three days and increases considerably with reduced strain rate for joints, aged 30 days. Fractographs and cross sections of the failed joints detail the effect of aging on the fracture mechanism.  相似文献   

14.
The effect of aging on the microstructure and shear strength of 62Sn36Pb2Ag/Ni-P/Cu and SnAg/Ni-P/Cu surface mount solder joints was investigated. An intermetallic (IMC) layer of Ni3Sn4 forms at the interface between both solders and the Ni-P barrier layer and it thickens with aging time, with a decrease in the thickness of remaining Ni-P layer. The SnAg solder joint initially has a greater shear force than that of SnPbAg, but it drops dramatically after 250 h aging, and fracture occurs at the Ni-P/Cu interface afterwards, although it initiates in the solder in the initial stage of aging. The fracture in SnAg solder joint may arise from the excessive depletion of Ni characterized by a rapid accumulation of P in the remaining Ni-P layer, which results in a poor adhesion between the Ni-P layer and the Cu substrate. However, for the SnPbAg solder joint, the shear force initially decreases rapidly then asymptotically approaches a minimum, and fracture occurs from inside solder toward the solder/Ni-P interface. SnPbAg solder joint keeps relatively higher shear strength compared to SnAg solder joint after long term aging even though it decreases with aging time.  相似文献   

15.
Fundamental understanding of the relationship among process, microstructure, and mechanical properties is essential to solder alloy design, soldering process development, and joint reliability prediction and optimization. This research focused on the process-structure-property relationship in eutectic Sn-Ag/Cu solder joints. As a Pb-free alternative, eutectic Sn-Ag solder offers enhanced mechanical properties, good wettability on Cu and Cu alloys, and the potential for a broader range of application compared to eutectic Sn-Pb solder. The relationship between soldering process parameters (soldering temperature, reflow time, and cooling rate) and joint microstructure was studied systemati-cally. Microhardness, tensile shear strength, and shear creep strength were measured and the relationship between the joint microstructures and mechani-cal properties was determined. Based on these results, low soldering tempera-tures, fast cooling rates, and short reflow times are suggested for producing joints with the best shear strength, ductility, and creep resistance.  相似文献   

16.
The shear strength behavior and microstructural effects after aging for 100 h and 1,000 h at 150°C are reported for near-eutectic Sn-Ag-Cu (SAC) solder joints (joining to Cu) made from Sn-3.5Ag (wt.%) and a set of SAC alloys (including Co- and Fe-modified SAC alloys). All joints in the as-soldered and 100-h aged condition experienced shear failure in a ductile manner by either uniform shear of the solder matrix (in the strongest solders) or by a more localized shear of the solder matrix adjacent to the Cu6Sn5 interfacial layer, consistent with other observations. After 1,000 h of aging, a level of embrittlement of the Cu3Sn/Cu interface can be detected in some solder joints made with all of the SAC alloys and with Sn-3.5Ag, which can lead to partial debonding during shear testing. However, only ductile failure was observed in all solder joints made from the Co- and Fe-modified SAC alloys after aging for 1,000 h. Thus, the strategy of modifying a strong (high Cu content) SAC solder alloy with a substitutional alloy addition for Cu seems to be effective for producing a solder joint that retains both strength and ductility for extended isothermal aging at high temperatures.  相似文献   

17.
研究了Sn-58Bi-0.5Ce/Cu钎焊接头在120℃时效过程中界面组织形貌及金属间化合物层(IMC)的厚度变化。结果表明:在Sn-58Bi-0.5Ce/Cu钎焊接头界面处形成了较为平坦的双层金属间化合物,靠近钎料的上层为Cu6Sn5相,邻近Cu基板的下层为Cu3Sn相。等温时效处理后,IMC层逐渐凸起,且随着时效时间的增加,IMC层不断增厚。通过对实验数据进行拟合,得到钎焊接头界面IMC层的生长速度常数为5.77×10–17m2/s。  相似文献   

18.
Sn-3.5mass%Ag eutectic solder is selected as a candidate base alloy for replacing the eutectic Sn-Pb, and the effect of bismuth (2, 5, 10mass%) on the fatigue life of bulk Sn-3.5mass%Ag eutectic at room temperature has been studied over the total strain range from 0.3 to 3 percent in tension-tension mode. Fatigue life is defined as the number of cycles at which the load decreases to a half of the initial value. The fatigue life dramatically decreases with increasing contents of bismuth and adding this element over 2% makes fatigue life shorter than that of tin-lead eutectic alloy. Tensile strength of the alloy significantly increases with an increase in bismuth contents due to solid solution hardening (<5%Bi) or dispersion strengthning of fine bismuth particles, while ductility of this system dramatically decreases with increasing bismuth contents. Fatigue life of these alloys depends on ductility obtained by tensile test. The fatigue life of Bi containing Sn-3.5%Ag alloys can be described by, (Δεp/2D)·N f 0.59 =0.66 where Nf is fatigue life defined by number of cycles to one-half load reduction, Δεp is the plastic strain range for initial cycles, D is the ductility as measured by reduction in area.  相似文献   

19.
The effects of (a) 0.5 wt.% of Pd addition, and (b) aging on mechanical and fatigue properties of eutectic solder (63Sn37Pb) were investigated. The creep rate of eutectic solder at room temperature is not affected by Pd addition. However, at 80°C, solder containing Pd creeps slower than Sn-Pb eutectic. Strain rate dramatically affects yield and tensile stress of eutectic solder with Pd as it does for the binary solder. Isothermal fatigue life of solder at 25°C is essentially not changed by Pd addition. The microstructure of Pd-containing solder consisted of polyhedral grains of (Pb), (Sn), and a dispersion of PdSn4 intermetallic. Significant microstructural changes and interphase interface phenomena take place during creep deformation at 25 and 80°C. Ambient aging for seven years leads to solder softening and to moderate increase in isothermal fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号