首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tensile properties and fatigue behaviour of three solution-treated Fe-29 Mn-9 Al-C (wt%) alloys having various carbon contents leading to different volume fractions of austenite and ferrite phases were investigated. The carbon contents were 1.06%, 0.60% and 0.26%, respectively and the corresponding volume fractions of austenite were 100%, 90% and 45%, respectively. The alloy having 1.06% carbon possessed the best tensile properties but its fatigue behaviour was only comparable to the other two alloys with lower carbon contents. The alloy having 0.60% carbon possessed the lowest yield strength, but its fatigue life was slightly better than other two alloys. The alloy having 0.26% C possessed lowest elongation and medium strength, and its fatigue life was comparable to the other two alloys. Their tensile properties and fatigue behaviour were explained in terms of crack initiation, crack propagation, grain size, constituent arrangement and constituent fraction.  相似文献   

2.
利用碳和碱土金属(Ca和Sr)对Mg-3Al合金进行单独或复合细化处理,研究其品粒细化效果及其晶粒细化对Mg-3Al合金抗拉强度特性的影响规律.结果表明:0.2%C(质量分数,下同)、0.2%Ca及0.2%Sr均可显著细化Mg-3Al合金,而经0.2%C与0.2%Ca或0.2%Sr复合细化可进一步提高细化效果.细化后M...  相似文献   

3.
Influence of Heat Treatment on the Fatigue Behaviour of 6005A Aluminium Alloy The influence of industrial heat treatment on the fatigue behaviour of 6005A Aluminium alloy has been investigated. By variation of the cooling rate from solution temperature and holding time at room temperature the size of precipitates improving strength and the width of precipitation free zones at grain boundaries may be altered independently from each other. Increasing the size of precipitates and the width of the precipitation free zones will decrease the tensile properties. In the high cycle fatigue region minor fatigue properties result from a significant broadening of the precipitation free zones, which enhance deformation and crack initiation at the grain boundaries. Coarsening the precipitates has no influence on fatigue behaviour, before crack initiation has taken place, but reduces fatigue crack propagation rate and by this improves the total lifetime.  相似文献   

4.
Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响   总被引:1,自引:0,他引:1  
研究了Al-5Ti-0.25C细化剂对2024铝合金铸态显微组织及力学性能的影响。试验结果表明:未添加细化剂时,2024铝合金显微组织呈粗大的枝晶状,平均尺寸约为150μm;添加Al-5Ti-0.25C后,晶粒为细小的等轴晶。本试验条件下,最佳的细化剂添加量为0.3%,此时,2024铝合金的平均晶粒尺寸为56μm,其力学性能得到显著提高,抗拉强度和延伸率分别为382 MPa、2.60%,与未细化试样相比增幅分别为12.4%、69.9%。  相似文献   

5.
The effects of beta flecks on tensile properties and low-cycle fatigue life were investigated at room temperature for Ti–10V–2Fe–3Al alloy. It was found that beta flecks had a significant influence on tensile ductility and low-cycle fatigue life. The greater the volume fraction of beta flecks (PA) or maximum area of beta flecks (Smax), the lower the tensile ductility and low-cycle fatigue life. Extensive scanning electron microscopy (SEM) and light microscopy (LM) observation showed that under tensile load, cracks preferentially nucleated at β grain boundaries of beta flecks, then grew, connected and propagated along grain boundaries to form characteristics of intergranular fracture and quasi-cleavage fracture. While under an alternating load, beta flecks acted as sites for low-cycle fatigue crack nucleation due to inhomogeneous alternating strains between soft GB and aged beta matrix. The presence of beta flecks accelerates both the crack nucleation and early crack propagation.  相似文献   

6.
《材料科学技术学报》2019,35(8):1607-1617
GH4169 at 650 °C in atmosphere was investigated by using single edge notch tensile specimens. The number of main cracks and crack initiation mechanisms at the notch surface strongly depended on the grain size. The crack initiation life accounted for more percentages of the total fatigue life for the alloy with smaller grain size. The fatigue life generally increased with increasing crack initiation life. The small crack transited to long crack when its length reached ˜10 times the grain size.  相似文献   

7.
Bulk nanocrystalline Ni and Ni-15wt%Fe alloy were fabricated via electrodeposition techniques. The nominal grain size of nickel samples was varied from 15 to 200 nm by employing different deposition parameters. The grain size was further reduced to 9 nm by alloying nickel with iron. The tensile properties were evaluated at room temperature using dog-bone shaped samples. The results of this study confirm that strength and strain hardening rate increase with decreasing grain size. The fracture behavior was found to depend on the grain size, presence of large and small defects, and the stress state. The tensile elongation and reduction in area varied significantly among the samples and did not correlate with the fracture behavior. Three categories of behavior were identified. In Type I the samples showed completely ductile fracture but very low tensile elongation. In Type II the samples showed a relatively brittle behavior but impressive tensile elongation. In Type III the samples showed ductile behavior with reasonable tensile elongation. In this article, the tensile elongation and the fracture mode of nanocrystalline face centered cubic (FCC) metals are discussed in terms of deformation behavior and presence of defects.  相似文献   

8.
Fatigue properties of a thermomechanically treated 7475 aluminium alloy have been studied in the present investigation. The alloy exhibited superior fatigue life compared to conventional structural aluminium alloys and comparable stage II crack growth rate. It was also noticed that the fatigue crack initiated from a surface grain and the crack extension was dominated by ductile striations. Analysis also revealed that this alloy possessed fracture toughness and tensile properties superior to that noticed with other structural aluminium alloys. Therefore the use of this alloy can safely reduce the overall weight of the aircraft.  相似文献   

9.
The microstructure evolution and tensile properties of ZK60 magnesium alloy after equal channel angular pressing (ECAP) have been investigated. The results show that the two-step ECAP process is more effective in grain refinement than the single-step ECAP process due to the lower deformation temperature, a mean grain size of ~0.8 μm was obtained after two-step ECAP process at 513 K for four passes and 453 K for four passes. The EBSD examination reveals that ZK60 alloy after two-step ECAP process exhibits a more homogeneous grain size and misorientation distribution than single-step ECAP process. Both alloys after ECAP process present similar strong {0002} texture. The tensile strength of two-step ECAP alloy has also been improved compared with the single-step ECAP alloy. The strengthening effect was mainly ascribed to grain refinement.  相似文献   

10.
ZE41 magnesium alloy was successfully produced by friction stir processing and grain refinement was achieved from a starting size of 107 μm±6.7 μm to 3.5 μm±1.5 μm. MgZn intermetallic which was appeared as network like structure at the grain boundaries before friction stir processing was greatly affected due to the severe plastic deformation and broken as small particles as observed from the microstructural studies. Higher hardness (≈30 %) was measured for the fine grained ZE41 magnesium alloy compared with the base alloy due to the grain refinement. From the tensile tests, yield strength and ultimate tensile strength was significantly increased at the cost of decreased ductility reflected in lower strain for the fine grained ZE41 compared with the base alloy. Wear studies showed higher coefficient of friction and lower mass loss for the grain refined ZE41 magnesium alloy. From the results, it can be understood that the grain refinement achieved by friction stir processing has a profound influence on enhancing the mechanical and tribological properties of ZE41 magnesium alloy.  相似文献   

11.
挤压对AZ91铸造镁合金力学性能的影响   总被引:1,自引:1,他引:1  
对挤压变形前后的AZ91镁合金进行了微观组织和力学性能研究.结果表明:挤压成形后合金的抗拉强度和塑性均得到提高;孪晶的产生,导致挤压合金室温压缩的应力-应变曲线上有屈服平台出现;晶粒尺寸强烈影响合金的强度.室温时,挤压合金的流变强度较铸态的高,而高温压缩的强度则较铸态的低.  相似文献   

12.
少量Sc对7055铝合金组织与性能的影响   总被引:9,自引:1,他引:9  
利用拉伸试验、光学金相、X射线物相分析、SEM及TEM等实验方法,研究了添加0.2%Sc(质量分数)对7055铝合金组织与性能的影响.实验结果表明,添加0.2%Sc可以显著细化7055铝合金铸态晶粒并减少晶界非平衡共晶相数量,促进非平衡共晶相在均匀化退火时的溶解,从而提高合金固溶度;由于Sc的添加可以提高7055Sc合金的溶质原子固溶度、形成更为均匀弥散分布的Al3ScZr粒子、以及抑制变形组织再结晶和有效细化固溶处理后的(亚)晶粒尺寸,因而显著提高7055Sc合金综合力学性能.  相似文献   

13.
The objective of this investigation is to study the effects of annealing treatment on the ratcheting behavior of extruded AZ31B magnesium alloy. First, the microstructures and monotonic tensile properties of the extruded and annealed alloys were assessed. The results showed that the grain size increased slightly with increasing annealing time until an annealing time of 6 h after which abnormal grain growth happened. Accordingly, the ultimate tensile strength of the Mg alloy decreased with increasing annealing time, while the tensile yield strength and elongation percentage of the Mg alloy increased with annealing time until the annealing time reached 2 h. The cyclic softening/hardening behavior of the annealed AZ31B Mg alloy was similar to that of the extruded alloy: first an apparent cyclic softening was observed, then a cyclic hardening occurred, and finally a stable state was reached. The annealing treatment delayed the occurrence of the cyclic hardening. It was also shown that the effects of the annealing time on the ratcheting strain of the Mg alloy depended of the loading path.  相似文献   

14.
The effects of cryorolling (CR) on high cycle fatigue (HCF) and fatigue crack growth rate behaviour of Al 7075 alloy have been investigated in the present work. The Al 7075 alloy was rolled for different thickness reductions (40% and 70%) at cryogenic (liquid nitrogen) temperature and its tensile strength, fatigue life, and fatigue crack growth mechanism were studied by using tensile testing, constant amplitude stress controlled fatigue testing, and fatigue crack growth rate testing using load shedding (decreasing ΔK) technique. The microstructural characterization of the alloy was carried out by using Field emission scanning electron microscopy (FESEM). The cryorolled Al alloy after 70% thickness reduction exhibits ultrafine grain (ufg) structure as observed from its FESEM micrographs. The cryorolled Al 7075 alloys showed improved mechanical properties (Y.S, U.T.S, Impact energy and Fracture toughness are 430 Mpa, 530 Mpa, 21 J, 24 Mpa m1/2 for 40CR alloy) as compared to the bulk 7075 Al alloy. It is due to suppression of dynamic recovery and accumulation of higher dislocations density in the cryorolled Al alloys. The cryorolled Al alloy investigated under HCF regime of intermediate to low plastic strain amplitudes has shown the significant enhancement in fatigue strength as compared to the coarse grained (CG) bulk alloy due to effective grain refinement. Fatigue crack growth (FCGR) resistance of the ufg Al alloy has been found be higher, especially at higher values of applied stress intensity factor ΔK The reasons behind such crack growth retardation is due to diffused crack branching mechanism, interaction between a propagating crack and the increased amount of grain boundaries (GB), and steps developed on the crack plane during crack-precipitate interaction at the GB due to ultrafine grain formation.  相似文献   

15.
Abstract

In the present study, the room temperature mechanical properties of nanocrystalline Ni and Ni–75 wt-%Co alloy, prepared by pulse electrodeposition, were contrasted. Both higher strength and higher ductility were obtained for the Ni–75%Co alloy with a dual phase structure and an average grain size of 7·2 nm. By means of TEM observations of grain structures before and after tensile deformation for Ni and Ni–75%Co samples, a link between the ductility and the variation of stress induced grain growth during tensile deformation was established. Observations of TEM showed stress induced grain growth during tensile deformation, subjected to very high stresses and large strains, is very insignificant for the Ni–75%Co alloy in sharp contrast to the significant stress induced grain growth occurring in Ni. It was proposed that suppression of stress induced grain growth during tensile deformation can delay and even prohibit formation of shear banding plastic instability and thus enhances uniform strain leading to an enhanced ductility.  相似文献   

16.
In this study the effect of Al–8B grain refiner on the structural and properties of Al–12Zn–3Mg–2.5Cu aluminum alloy were investigated. The optimum amount for B containing grain refiner was selected as 3.75 wt.%. The results showed that B containing grain refiner is more effective in reducing average grain size of the alloy. T6 heat treatment was applied for all specimens before tensile testing. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the heat treatment, the average tensile strength increased from 479 MPa to 537 MPa for sample refined with 3.75 wt.% Al–8B. The fractography of the fractured faces and microstructure evolution was characterized by scanning electron microscopy and optical microscopy.Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al–12Zn–3Mg–2.5Cu aluminum alloy to the dry sliding wear.  相似文献   

17.
The structural examinations and tensile properties of thin-section Al castings (319 Al alloy) have been investigated by applying a pattern with different cross sections (2–12 mm). Al–5Ti–1B and Al–5Zr grain refiners were added to the molten Al alloy to produce different levels of Ti (0.01%, 0.05%, 0.1% and 0.15%) and Zr (0.05%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5%) in the castings. From macrostructural studies, it was found that Al–5Zr is less effective in grain refining of 319 alloy in comparison with Al–5Ti–1B master alloy. The optimum levels of grain refiners were selected for determination of tensile properties. T6 heat treatment was applied for selected specimens before tensile testing. Further structural results also showed that thinner sections are less affected by grain refiners. This observation was found to be in a good agreement with tensile test results, where tensile properties of the base and grain refined alloys did not show considerable differences in thinner sections (<6 mm).  相似文献   

18.
High-cycle fatigue properties were investigated at 4, 77 and 293 K in Ti-5%Al-2.5%Sn ELI alloy which was used for liquid hydrogen turbo-pumps of Japanese-built launch vehicles. Mean grain size of specimens was controlled to be about 30 or 80 μm. In the specimens with a grain size of 30 μm, fatigue strengths at 106 cycles at 4 and 77 K are 1.6 and 1.5 times higher than that at 293 K, respectively. On the other hand, in the specimen with a grain size of 80 μm, fatigue strengths at 106 cycles at 4 and 77 K get lower to the same level as that at 293 K. Thus, it is concluded that refinement of α grains is one of important factors to obtain the good high-cycle fatigue properties for Ti-5%Al-2.5%Sn ELI alloy at cryogenic temperature.  相似文献   

19.
热处理对AZ31B镁合金轧板组织和性能的影响   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金轧板经不同温度、时间退火后的组织和性能及其再结晶行为。结果表明,热轧板材在退火过程中主要发生再结晶;退火后,强度略有下降,但伸长率明显提高;在523K下退火,保温60min,可获得平均晶粒直径为10μm的细晶组织,其抗拉强度为258MPa,断裂伸长率为22.3%,综合性能较好。热轧态板材呈脆性准解理断裂,退火后转变为韧性断裂。  相似文献   

20.
退火处理是改善钛合金显微组织,提高力学性能及超塑成形性能的一种重要工艺。使用真空退火炉在850℃-950℃温度区间内对锻态Ti-6Al-4V合金的进行了高温退火处理,研究了退火态Ti-6Al-4V合金微观组织演变及其在温度为900℃,应变速率为0.01 s-1时的超塑拉伸性能。结果表明,锻态Ti-6Al-4V合金的初生α晶粒尺寸随真空退火温度的升高而减小,β相比例随真空退火温度升高而增大。当真空退火温度为910℃时,Ti-6Al-4V合金的晶粒尺寸和α相与β相分布较为均匀,其超塑拉伸试验结果表明,该合金表现出最佳的超塑拉伸性能,其拉伸延伸率达到785%,峰值应力仅为26.8 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号