首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the process chain for replication of submicron structures with varying aspect ratios (AR) up to 6 in polymethylmethacrylate (PMMA) by hot embossing to show the capability of the entire LIGA process to fabricate structures with these dimensions. Therefore a 4.7 μm thick layer of MicroChem 950k PMMA A11 resist was spin-coated on a 2.3 μm Ti/TiO x membrane. It was patterned with X-ray lithography at the electron storage ring ANKA (2.5 GeV and λ c ≈ 0.4 nm) at a dose of 4 kJ/cm3 using a Si3N4 membrane mask with 2 μm thick gold-absorbers. The samples were developed in GG/BDG and resulted in AR of 6–14. Subsequent nickel plating at 52°C resulted in a 200 μm thick nickel tool of 100 mm diameter, which was used to replicate slit-nozzles and columns in PMMA. Closely packed submicron cavities with AR 6 in the nickel shim were filled to 60% during hot embossing.  相似文献   

2.
We present a two-axis micro fluxgate sensor on single chip for electronic compassing function. To measure X- and Y-axis magnetic fields, functional two fluxgate sensors were perpendicularly aligned and connected each other. The fluxgate sensor was composed of square-ring shaped magnetic core and solenoid excitation and pick-up coils. The solenoid coils and magnetic core were separated by benzocyclobutane which had high insulation and good planarization characters. Copper coil patterns of 10 μm width and 6 μm thickness were electroplated on Ti (300 Å)/Cu (1,500 Å) seed layers. 3 μm thick Ni0.8Fe0.2 (permalloy) film for the magnetic core was also electroplated under 2,000 gauss. Excellent linear response over the range of ?100 μT to +100 μT was obtained with the sensitivity of ~280 V/T. Actual chip size was 3.1×3.1 mm2. The sine and cosine signals of two-axis fluxgate sensor had a good function of azimuth compass.  相似文献   

3.
We report a simple low-cost magnetic microfluidic device for magnetic bead separation and immobilisation. One dimensional arrays of localised high magnetic field gradients are constructed at the interfaces between regions magnetised with opposing polarities on the magnetic Fe2O3 composite stripes of credit cards. The localised high magnetic field gradients are employed to trap magnetic beads on the surface of the magnetic stripe, without the need for external magnetic components. A magnetic card writer was used to deterministically pattern the magnetic stripes of credit cards to define arrays of magnetic reversals. The fabrication of the device is based on PDMS to credit card bonding of simple flow channels. Experimental results demonstrate that magnetic beads can be captured with efficiencies of 85, 67 and 27 % at flow rates of 25, 50 and 100 μL min?1, respectively. The results show that the credit card-based magnetic separator might offer an efficient, simple, low-cost alternative to traditional microfluidic magnetic separators for applications such as immunomagnetic cell separation.  相似文献   

4.
In biometric and biomedical applications, a special transporting mechanism must be designed for the micro total analysis system (μTAS) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is the microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, an optimal fuzzy sliding-mode control (OFSMC) based on the 8051 microprocessor is designed and a complete microfluidic manipulated biochip system is implemented in this study, with a pneumatic pumping actuator, two feedback-signal photodiodes and flowmeters for better microfluidic management. This new technique successfully improved the efficiency of biochemical reaction by increasing the effective collision into the probe molecules as the target molecules flow back and forth. The new technique was used in DNA extraction. When the number of Escherichia coli cells was 2×102–104 in 25 μl of whole blood, the extraction efficiency of immobilized beads with solution flowing back and forth was 600-fold larger than that of free beads.  相似文献   

5.
The design, fabrication and measuring of piezoelectric micromachined ultrasonic transducers (pMUTs), including the deposition and patterning of PZT films, was investigated. The (100) preferential orientation of PZT film have been deposited on Pt/Ti/SiO2/Si (100) substrates by modified sol–gel method. PZT film and Pt/Ti electrode were patterned by novel lift-off using ZnO as a sacrificial layer avoiding shortcomings of dry and wet etching methods. pMUT elements have been fabricated by an improved silicon micromachining process and their properties were also characterized. As measured results, the pMUT tends to operate in a standard plate-mode. The receive sensitivity and transmit sensitivity of pMUT element whose active area only has 0.25 mm2 are ?218 dB (ref. 1 V/μPa) and 139 dB (ref. 1 μPa/V), respectively.  相似文献   

6.
Here we report a novel technology to obtain arrays of highly efficient magnetic micro-traps that relies on simple fabrication process. Developed micro-traps consist in chains of iron particles diluted in polydimethylsiloxane (PDMS). We analyzed the microstructure of the composite membrane by X-ray tomography. It revealed the predominance of aligned chain-like agglomerates. Largest traps, with diameter ranging from 4 to 11 µm, are found to be the most efficient. The trap arrays were characterized by a density of 1300 magnetic micro-traps/mm2, an average nearest neighbor distance of 21 µm. Implemented in a microfluidic channel operating at a relatively high flow rate of 0.97 µL/s—a flow velocity of 8.3 mm/s—we measured a trapping efficiency of more than 99.7%, with a throughput of up to 7100 trapped beads/min. These performances are competitive with other approaches like hydrodynamic trapping. The strengths of this technology are its simple fabrication and easy handling.  相似文献   

7.
Single-cell analysis has been widely applied in various biomedical applications, such as cancer diagnostics, immune status monitoring, and drug screening. To perform an accurate and rapid cellular analysis, various magnetic-activated cell sorting techniques are available in the markets. However, large sample requirement and uneven magnetic field distribution limit its application in single-cell trapping and following analysis. To address these problems, we developed a microfluidic microwell device for immunomagnetic single-cell trapping. By adding a microwell layer between the microchannel and magnet, the magnetic field along the device becomes more uniform. Besides, magnetic beads can be retained in the array of microwell after the high-speed washing step, whereas untrapped beads would be flushed away, resulting in high single-particle trapping efficiency (62%) and purity (99.6%). To achieve large-area single-cell trapping, we introduced a “sweeping” loading protocol to further expand the single-particle trapping range. In the microwell region near to the edge of the magnet, over 3000 single magnetic beads were trapped in a 10 mm2 area. Finally, we demonstrated immunomagnetic-labeled THP-1 cells can successfully be trapped at single-cell level in the microwell. The cell trapping process can be done in 10 min. We believe the platform with an accurate and efficient single-cell trapping functionality could potentially be used for various cellular analyses at the single-cell level.  相似文献   

8.
The interface between the blood pool and the extravascular matrix is fundamental in regulating the transport of molecules, nanoparticles and cells under physiological and pathological conditions. In this work, a microfluidic chip is presented comprising two parallel microchannels connected laterally via an array of high aspect ratio micropillars, constituting the permeable vascular membrane. A double-step lithographic process combined with a replica molding approach is employed to realize 80 different arrays of micropillars exhibiting three cross-sectional geometries (rectangular, elliptical and curved); two orientations (normal and parallel) with respect to the flow; and a variety of width and gap sizes, respectively, ranging from 10 to 20 μm and 2 to 5 μm. As compared to conventional rectangular structures, the curved pillars provide higher bending stiffness, lower adhesive interactions, and smaller intra-channel separation distances. Specifically, 10-μm-wide curved pillars, laying parallel to the flow, offered the highest mechanical stability. To assess vascular permeability, the extravascular channel was filled with a hyaluronic acid hydrogel, while fluorescent Dextran molecules and calibrated polystyrene beads were injected in the vascular channel. Membrane permeability was observed to reduce with the molecular weight of Dextran and diameter of the beads, ranging from about 6 × 10?5 to 2 × 10?5 cm/s for 40 and 250 kDa Dextran and up to zero for 1.5 μm beads. The presented data demonstrate the potential of the proposed microfluidic chip for analyzing the vascular and extravascular mass transport, over multiple spatial and temporal scales, in a variety of diseases involving differential permeation across vascular walls.  相似文献   

9.
The on-line trypsin microreactor and nanoelectrospray emitter for peptide mass mapping was demonstrated to be functional under aqueous conditions, but it is well known that electrospray ionization works more efficiently with organic co-solvents. Here, an activity assay was developed to determine the activity of this integrated device with acetonitrile as a co-solvent. Trypsin was immobilized onto fused silica capillaries pulled to fine tips as integrated microreactors coupled as nanoelectrospray ionization emitters. The model substrate N α-benzoyl-l-arginine ethyl ester (2.5–20 μM) and an internal standard (N α-Z-l-arginine (Z-Arg)) were dissolved in acetonitrile/water at various ratios and infused through the immobilized trypsin microreactor. The trypsin digestion product N α-benzoyl-l-arginine (B-Arg) was detected by nanoelectrospray ionization coupled to an ion trap mass spectrometer, and its abundance compared to Z-Arg for quantification. The activity of immobilized trypsin in the microreactor was determined by measuring the ratio of the peak intensities of the hydrolysis product B-Arg to Z-Arg internal standard (three replicates). Kinetic parameters determined from Lineweaver–Burk analysis indicate an enhancement of trypsin activity upon immobilization and the addition of increasing ratios of acetonitrile up to 80 %, where K m is 0.14 mM and V max = 1.2 μM/s. Much lower immobilized trypsin activities were noted at 100 % ammonium acetate or 100 % acetonitrile than when the two solvents were mixed. The results clearly indicate that immobilized trypsin retains high biocatalytic activity in 20–80 % acetonitrile and is highly compatible with nanoelectrospray ionization mass spectrometry.  相似文献   

10.
The patterning technique of Pb(Zr, Ti)O3 (PZT) thin film is an essential process in device fabrication processes for application in microsensors and microactuators. In this paper, a novel pattern technique is proposed for PZT thin film by UV photolysis processes. PZT thin films were first spin coated on the substrate and exposed by UV light for photolysis step. The UV photolysis step defined exposed and unexposed area by mask, and the pattern will be transferred to PZT thin film. After photolysis, PZT films were placed in non-ionic surfactant to remove unexposed area. Finally, PZT films were sintered at 650 °C in the furnace for crystallization. Experimental results showed that remnant polarization of patterned PZT film by UV photolysis was 21.4 μc cm?2, which was compared to 17.24 μc cm?2 by hot plate prolysis. Coercive fields were 45 and 104 kV cm?1 by UV photolysis and hot plate prolysis, respectively. Dielectric loss was 0.027 by UV photolysis which was much smaller than 0.043 by hot plate prolysis. PZT thin films patterned by UV photolysis showed satisfactory geometries.  相似文献   

11.
Circulating tumour cells (CTC) in the bloodstream has been implicated in cancer metastasis. Efficient removal of CTC could potentially be an effective therapeutic measure against cancer metastasis. In this study, the hydrodynamic focusing flow in microfluidic channels (R e  ? 1) was considered together with the magnetophoretic force. The localised magnetic field was achieved through a passivated current-carrying multilayered microstripline, where the generated field gradient was used to attract the magnetic beads to the desired outlet. The experimental results show that the device is capable of isolating purely magnetic beads with an efficiency of 91 % while isolation efficiency of the magnetically tagged HeLa cervical cancer cells from cell suspension yielded an isolation efficiency of 79 %.  相似文献   

12.
In this work, we demonstrated an all-dry, top-down, and one-step rapid process to fabricate paper-based microfluidic devices using fluorocarbon plasma polymerization. This process is able to create fluorocarbon-coated hydrophobic patterns on filter paper substrates while maintaining the trench and detection regions intact and free of contamination after the fabrication process, as confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We have shown that the processing time is one critical factor that influences the device performance. For the device fabricated with a sufficiently long processing time (180 s), the sample fluid flow can be well confined in the patterned trenches. By testing the device with an 800 μm channel width, a sample solution amount as small as 4.5 μL is sufficient to perform the test. NO2 ? assay is also performed and shows that such a device is capable for biochemical analysis.  相似文献   

13.
The nano-motion actuator (NMA) had been designed for precise track following on a spin-stand which evaluated read and write performance of a high-density magnetic recording. A required specification of the original NMA was a resonance frequency of over 5 kHz and working distance of over 10 μm. However, according as industrial researches of the perpendicular magnetic recording progress, a phenomenon that is called WATER (Wide Area Track ERasure) should be evaluated on the spin-stand. Since required working distance to evaluate the WATER reaches to over 50 μm, an XY stage on the spin-stand was cooperated with the NMA, as usual. However, the piggyback system which combined the XY stage with the NMA could not observe the WATER phenomenon continuously on a disk medium. Therefore, a new NMA which had a large working distance of over 50 μm was required. The new NMA was designed and simulated several resonance modes by using 2D or 3D of EFM analysis. The new actuator called as NMA-k501 realized the working distance of 43.3 μm and the resonance frequency of 5.33 kHz with a mechanical damper. As wide servo bandwidth was reached to 2.75 kHz to apply a PID controller, clear and sharp step responses could be showed at a 1 and a 10 nm, respectively. Furthermore, when precise positioning stability was evaluated, the NMA-k501 was positioning within 0.101 nm at 3σ.  相似文献   

14.
Due to consumer preference for products with ever higher performance, a requirement exists for precise autofocusing microscope systems to perform the inspection process in automated mass production lines. Accordingly, the present study proposes a laser-based microscope system in which a precise autofocusing capability is achieved using a position feedback signal based on the distance L between the geometrical center (X c , Y c ) of the image captured by the CCD sensor and the centroid (x centroid , y centroid ) of the image. The experimental results show that the proposed system has a positioning accuracy of 2.2 μm and a response time of 1 s given a working range of ±200 μm. The autofocusing performance of the proposed system is thus better than that of a conventional centroid-based system, which typically achieves a positioning accuracy of around 5.2 μm.  相似文献   

15.
This work reports the development and the characterization of a microthermoelectric generator (μTEG) based on planar technology using electrochemically deposited constantan and copper thermocouples on a micro machined silicon substrate with a SiO2/Si3N4/SiO2 thermally insulating membrane to create a thermal gradient. The μTEG has been designed and optimized by finite element simulation in order to exploit the different thermal conductivity of silicon and membrane in order to obtain the maximum temperature difference on the planar surface between the hot and cold junctions of the thermocouples. The temperature difference was dependent on the nitrogen (N2) flow velocity applied to the upper part of the device. The fabricated thermoelectric generator presented maximum output voltage and power of 118 mV/cm2 and of 1.1 μW/cm2, respectively, for a device with 180 thermocouples, 3 kΩ of internal resistance, and under a N2 flow velocity of 6 m/s. The maximum efficiency (performance) was 2 × 10?3 μW/cm2 K2.  相似文献   

16.
A microfluidic chip has been realized for investigating immune cell (U937) activation with lipopolysaccharide (LPS) and subsequent pro-inflammatory cytokine (Interleukin-6, IL-6) detection (Ruffert et al. Proc. EMBL Conference Microfluidics 2012a, p 184; Proc. NanoBioTech Montreux, Poster Sessions B 2012b, pp 17–18). The microfluidic chip comprises two compartments: one compartment for the on-chip cell cultivation, differentiation, and stimulation, while the second one hosts superpara-magnetic beads (Ø 2.8 μm) conjugated to anti-IL-6 antibodies for capturing the LPS-induced IL-6. The two compartments are separated by a micropillar-based filter with a spacing of 2 μm. This filter allows the induced cytokines to infuse into the bead compartment (i.e. the magnetic immunoassay compartment), while preventing the magnetic beads and cells to cross over to the other compartment. To fulfill this requirement, a high aspect ratio pillar array was demonstrated as key element of this study and functionally characterized. The pore size of the filter is given by the lateral distance between the single pillars, which are fabricated by molding microfluidic structures in polydimethylsiloxane, using a master mold made of the expoy-based photoresist SU-8?. An aspect ratio of 5:1 could be achieved with SU-8? bars featuring the dimensions 10 µm × 2 μm (height × width).  相似文献   

17.
Electrowetting on dielectric (EWOD) is useful in manipulating droplets for digital (droplet-based) microfluidics, but its high driving voltage over several tens of volts has been a barrier to overcome. This article presents the characteristics of EWOD device with aluminum oxide (Al2O3, ε r  ≈ 10) deposited by atomic layer deposition (ALD), for the first time as the high-k dielectric for lowering the EWOD driving voltage substantially. The EWOD device of the single-plate configuration was fabricated by several steps for the control electrode array of 1 mm × 1 mm squares with 50 μm space, the dielectric layer of 1,270 Å thick ALD Al2O3, the reference electrode of 20 μm wide line electrode, and the hydrophobic surface treatment by Teflon-AF coating, respectively. We observed the movement of a 2 μl water droplet in an air environment, applying a voltage between one of the control electrodes and the reference electrode in contact with the droplet. The droplet velocity exponentially depending on the applied voltage below 15 V was obtained. The measured threshold voltage to move the droplet was as low as 3 V which is the lowest voltage reported so far in the EWOD researches. This result opens a possibility of manipulating droplets, without any surfactant or oil treatment, at only a few volts by EWOD using ALD Al2O3 as the dielectric.  相似文献   

18.
Sandwich NiFe/Cu/NiFe film sensors with symmetrical meandering structure are fabricated by Micro-Electro-Mechanical-System (MEMS) technology, the longitudinal, transverse, and perpendicular giant magnetoimpedance (GMI) effect have been investigated comprehensively. The correlation between film thickness and GMI effect are analyzed thoroughly. The experimental results show that the alternating current (AC) frequency of maximum GMI ratio decreases gradually with the increasing of magnetic layer thickness, but the conducting layer exhibits an opposite tendency. The NiFe and Cu layer both show a GMI ratio tendency from increasing to decreasing along with the increase of film thickness. It is observed the longitudinal, transverse and perpendicular GMI effect share a common characteristic: the AC frequency of maximum GMI ratio increases with the increase of external field intensity. However, there is a notable difference between them, it is demonstrated that the higher GMI ratio and sensitivity can be obtained in the longitudinal direction. The longitudinal GMI ratio reaches the peak value 191.2 % at f AC = 6.5 MHz under H L = 17 Oe in six turns sample with the Cu and NiFe thickness of 6 and 7 μm, respectively.  相似文献   

19.
Pumping in microfluidic devices is an important issue in actuating fluid flow in microchannel, especially that capillary force has received more and more attractions due to the self-driven motion without external power input. However, less 2D simulation was done on the capillary flow in microchannel especially the meander microchannel which can be used for mixing and lab-on-a-chip (LOC) application. In this paper, the numerical simulation of the capillary flow in the meander microchannel has been studied using computer fluid dynamic simulation software CFD-ACE+. Different combinations of channel width in the X-direction denoted as Wx and Y-direction denoted as Wy were designed for simulating capillary flow behavior and pressure drop. The designed four types of meander microchannels (Wx × Wy) were 100 × 100 μm, 100 × 200 μm, 50 × 200 μm, and 50 × 400 μm. In this simulation results, it is found that the capillary pumping speed is highly depending on the channel width. The large speed change occurs at the turning angle of channel width change from Wx to Wy. The fastest pumping effect is found in the meander channel of 100 × 100 μm, which has an average pumping speed of 0.439 mm/s. The slowest average flow speed of 0.205 mm/s occurs in the meander channel of 50 × 400 μm. Changing the meander channel width may vary the capillary flow behavior including the pumping speed and the flow resistance as well as pressure drop which will be a good reference in designing the meander microchannels for microfluidic and LOC application.  相似文献   

20.
A low-temperature solvent bonding system using methanol and water has been developed to bond poly(methyl methacrylate) (PMMA) microchips at 35 °C. The substrate/cover plate adhesion strengths obtained with this bonding protocol peaked at 4,000 kN/m2 for unmodified PMMA substrates. Nanoindentation measurements performed using atomic force microscopy revealed that only the first 30 nm of the PMMA surface showed a decreased hardness following surface modification and solvent treatment of the PMMA surface allowing the channel architecture to be maintained. The low temperature utilized for bonding enabled both a temperature-robust and temperature-labile enzyme to be facilely patterned prior to bonding with little-to-no loss in enzyme activity. Furthermore, the bonding methodology could be customized and used to fabricate an enzyme microreactor with pepsin (a pH, temperature and solvent sensitive enzyme). The enzyme microreactor performance was characterized by the longevity of the microreactor, as well as the efficiency of the protein digest performed. Enzyme immobilized with WSC decreased over a period of days, whereas the enzyme immobilized with both WSC (water soluble carbodiimide and NHS (N-hydroxysuccinimide) remained active even after a month of use. Short 10 mm column lengths with limited residence time provided high protein sequence coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号