首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wettability of the heated surface under pool boiling of surfactant solutions and nano-fluids has been investigated. Tri-sodium phosphate (TSP, Na3PO4) solutions (0.01, 0.05, 0.1, 0.3, 0.5, 0.8 wt.%) and Aluminum oxide (Al2O3) nano-fluids (NF) (0.5, 1, 2, 4 vol.%) were prepared for experiments. Stainless steel (SUS 304) strips (30 × 30 × 3 mm) were heated by an alcohol lamp and quenched in the prepared solutions. Before complete quenching, when the surface temperature was 150 ± 10 °C (nucleate boiling region), the strip was taken out and excessive liquid on the surface was removed. Contact angles of pure water and the solutions on the quenched surface and fresh surface were measured. Contact angles of pure water on the quenched surfaces (5°–25°) were much smaller than those on the fresh surface (65°–70°). The solutions (TSP, NF) on the quenched surface shows the smallest contact angle (5°–15°). Surfaces deposited TSP and nano-particle could affect surface energy of the strips and enhance hydrophilicity of the surfaces. Several implications of the experimental results on the pool boiling CHF model and CHF enhancement using TSP and NF were discussed.  相似文献   

2.
The main focus of the present work is to investigate Critical Heat Flux (CHF) enhancement using CuO nanofluid relative to CHF of pure water. To estimate the effect of nanoparticles on the CHF, pool boiling CHF values were measured for various volume concentrations of CuO nanofluid and compared with pure water. CHF enhancement of 130% was recorded at 0.2 % by volume of CuO nano-fluids. Surface roughness of the heater surface exposed to three measured heating cycles indicated surface modifications at different volume concentrations of nanofluid. SEM image of the heater surface revealed porous layer build up, which is thought to be the reason for CHF enhancement.  相似文献   

3.
Heat transfer measurements and photographic studies are performed to capture the detailed evolution of the liquid–vapor interface near critical heat flux (CHF) for a 90-degree downward-facing convex surface. The test surface, with a width of 3.2 mm and a 102.6-mm radius, consists of a series of nine heaters that dissipate equal power. Instrumentation within each heater facilitates localized heat flux and temperature measurements along the convex surface, and transparent front and back windows enable optical access to a fairly two-dimensional liquid–vapor interface. Near CHF, vapor behavior along the convex surface is cyclical, repeatedly forming a stratified vapor layer at the bottom of the convex surface, which stretches as more vapor is generated, and then flows upwards along from the surface. Subsequently, heaters at the bottom of the convex surface, followed by the other heaters, are wetted with liquid before the nucleation/coalescence/stratification/release process is repeated. This study proves that despite the pronounced thickening of the vapor layer as it propagates upwards along the convex surface, CHF always commences on the bottom of the surface.  相似文献   

4.
分别在光滑及波形结构的铜表面上对水和乙醇进行饱和池沸腾实验,观测了临界热流密度(CHF)下临界波长的变化趋势,并分析了表面结构对沸腾传热系数及CHF的影响。实验验证了光滑表面上,临界波长随工质的不同而变化,继而影响CHF,其实验值与经典的临界波长及临界热流密度理论一致。而粗糙表面上的乙醇沸腾实验进一步发现,波形结构可以减小临界波长,从而有效提高CHF,其影响规律与相关文献的理论模型较为符合。  相似文献   

5.
实验研究了梯度孔密度通孔金属泡沫的池沸腾传热性能。工质为去离子水,梯度孔密度金属泡沫材质为铜和镍, 孔隙率为0.98,泡沫厚度为4-14 mm。实验结果表明:相比于单层泡沫,梯度孔密度金属泡沫显著的增强了沸腾传热能力,但增强程度受孔密度变化梯度、泡沫厚度和材料的影响;梯度孔密度泡沫的池沸腾传热性能随着表面活性剂SDS浓度的增大而减小,而且SDS降低了梯度孔密度金属泡沫的临界热流密度; 添加Al2O3纳米颗粒严重的削弱了梯度孔密度铜泡沫的池沸腾传热能力。  相似文献   

6.
Experiments for pool boiling of deionised water and acetone with different surfactant, 95% sodium dodecyl sulfate (SDS), Triton X-100 and octadecylamine, have been conducted under atmospheric pressure to investigate the effect of surface wettability. The boiling curves for different concentrations of surfactant solution on both smooth and roughened surfaces were obtained. The results show that the addition of surfactant can enhance the water boiling heat transfer, and the enhancement is more obvious for SDS solution; but has little influence on the acetone boiling curve. While the roughened surface enhanced the heat transfer for Triton X-100 solution, it also decreased the heat transfer coefficient for SDS solution. All these can be explained by including the changing of surface wettability, which has been neglected for a long time and should be an important parameter influencing boiling heat transfer. By incorporating such effects, the modified Mikic-Rohsenow pool boiling model, we proposed, can predict these experimental data well.  相似文献   

7.
An experimental investigation has been carried out to determine the heat transfer coefficient during pool boiling of water over a bundle of vertical stainless steel heated tubes of 19.0 mm diameter and 850 mm height. The p/D of bundle was 1.66 and was placed inside a glass tube of 100 mm diameter and 900 mm length. The data were acquired for the heat flux range of 2–32 kWm− 2.  相似文献   

8.
The pool boiling characteristics of nanofluids is affected by the relative magnitudes of the average surface roughness and the average particle diameter. In the present work, an attempt has been made to study the interactions between the nanoparticles and the heater surface. The experimental methodology accounts for the transient nature of the boiling phenomena. The boiling curves of electro-stabilized Al2O3 water-based nanofluids at different concentrations on smooth and rough heaters and the burn-out heat flux have been obtained experimentally. Extensive surface profile characterization has been done using non-intrusive optical measurements and atomic force microscopy. A measure of the surface wettability has been obtained by determining the advancing contact angle. These results give an insight into the relative magnitudes of dominance of the prevalent mechanisms under different experimental conditions. Boiling on nanoparticle coated heaters has been investigated and presented as an effective solution to counter the disadvantageous transient boiling behavior of nanofluids.  相似文献   

9.
The spectacular heat transfer enhancement revealed experimentally in nano-fluids suspensions is being investigated theoretically at the macro-scale level aiming at explaining the possible mechanisms that lead to such impressive experimental results. In particular, the possibility that thermal wave effects via hyperbolic heat conduction could have been the source of the excessively improved effective thermal conductivity of the suspension is shown to provide a viable explanation although the investigation of alternative possibilities is needed prior to reaching an ultimate conclusion.  相似文献   

10.
The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are investigated to determine the important parameters' effects on the heat transfer coefficient and also to have reliable empirical correlations based on the neural network analysis. Nanofluids with various concentrations of 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. The horizontal circular test plate, made from copper with different roughness values of 0.2, 2.5 and 4 μm, is used as a heating surface. The artificial neural network (ANN) training sets have the experimental data of nucleate pool boiling tests, including temperature differences between the temperatures of the average heater surface and the liquid saturation from 5.8 to 25.21 K, heat fluxes from 28.14 to 948.03 kW m− 2. The pool boiling heat transfer coefficient is calculated using the measured results such as current, voltage, and temperatures from the experiments. Input of the ANNs are the 8 numbers of dimensional and dimensionless values of the test section, such as thermal conductivity, particle size, physical properties of the fluid, surface roughness, concentration rate of nanoparticles and wall superheating, while the outputs of the ANNs are the heat flux and experimental pool boiling heat transfer coefficient from the analysis. The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are modeled to decide the best approach, using several ANN methods such as multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis networks (RBF). Elimination process of the ANN methods is performed together with the copper and aluminum test sections by means of a 4-fold cross validation algorithm. The ANNs performances are measured by mean relative error criteria with the use of unknown test sets. The performance of the method of MLP with 10-20-1 architecture, GRNN with the spread coefficient 0.7 and RBFs with the spread coefficient of 1000 and a hidden layer neuron number of 80 are found to be in good agreement, predicting the experimental pool boiling heat transfer coefficient with deviations within the range of ± 5% for all tested conditions. Dependency of output of the ANNs from input values is investigated and new ANN based heat transfer coefficient correlations are developed, taking into account the input parameters of ANNs in the paper.  相似文献   

11.
Experiments were carried out to investigate the pool boiling of alumina‐water nanofluid at 0.1 g/l to 0.5 g/l of distilled water, and the nucleate pool boiling heat transfer of pure water and nanofluid at different mass concentrations were compared at and above the atmospheric pressure. At atmospheric pressure, different concentrations of nanofluids display different degrees of deterioration in boiling heat transfer. The effect of pressure and concentration of nanoparticles revealed significant enhancement in heat flux and deterioration in pool boiling. The heat transfer coefficient of 0.5 g/l alumina‐water nanofluid was compared with pure water and clearly indicates deterioration. At all pressures the heat transfer coefficients of the nanofluid were lower than those of pure water. Experimental observation revealed particles coating over the heater surface and subsequent SEM inspection of the heater surface showed nanoparticles coating on the surface forming a porous layer. To substantiate the nanoparticle deposition and its effect on heat flux, investigation was done by measuring the surface roughness of the heater surface before and after the experiment. While SEM images of the heater surface revealed nanoparticle deposition, surface roughness of the heater surface confirmed it. Based on the experimental investigations it can be concluded that an optimum thickness of nanoparticles coating favors an increase in heat flux. Higher surface temperature due to the presence of nanoparticles coating results in the deterioration of boiling heat transfer. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20365  相似文献   

12.
The effects of orientation on flow boiling critical heat flux (CHF) were investigated using high-speed video and microphotographic techniques. Interfacial features were measured just prior to CHF and statistically analyzed. A dominant wavy vapor layer regime was observed for all relatively high-velocities and most orientations, while several other regimes were encountered at low velocities, in downflow and/or downward-facing heated wall orientations. The interfacial lift-off model was modified and used to predict the orientation effects on CHF for the dominant wavy vapor layer regime. The photographic study revealed a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid contact only in wetting fronts, located in the troughs of the interfacial waves. The waves, which were generated at an upstream location, had a tendency to preserve a curvature ratio as they propagated along the heated wall. CHF commenced when wetting fronts near the outlet were lifted off the wall. This occurred when the momentum of vapor normal to the wall exceeded the pressure force associated with interfacial curvature. The interfacial lift-off model is shown to be very effective at capturing the overall dependence of CHF on orientation.  相似文献   

13.
Macrolayer thicknesses in transition boiling were determined from the energy balance relation qtr = ρlHfgδl·f , based on measurements of qtr (the time-averaged heat flux in transition boiling) and f (the detachment frequency of vapor masses) for water and ethanol boiling on vertical and horizontal 15-mm-diameter surfaces under atmospheric pressure. The macrolayer thickness for the vertical surface, designed to prevent liquid contact with the periphery of the surface during the vapor mass hovering, agreed well with the correlation proposed previously by the present authors, when the heat flux at macrolayer formation is obtained from a nucleate boiling curve extrapolated to the superheat of transition boiling. The macrolayer on the horizontal surface was apparently thickened due to the inflow of bulk liquid beneath the growing vapor masses. © 1999 Scripta Technica, Heat Trans Jpn Res, 27(8): 568–583, 1998  相似文献   

14.
Using TiO2–water nanofluids as the test liquid, pool boiling experiments were carried out to investigate the dependence of the nucleate boiling heat transfer, surface wettability and critical heat flux (CHF) on the boiling time in nanofluids. In the experiments performed at sufficiently high nanoparticle concentrations, the boiling heat transfer first degraded, then improved, and finally reached an equilibrium state. It was hence supposed that the present nanofluids had competing effects to deteriorate and enhance the nucleate boiling heat transfer. As for the surface wettability and CHF, the static contact angle asymptotically decreased whilst the CHF asymptotically increased with an increase in the boiling time. The maximum CHF enhancement measured in the present experiments was 91%, and strong correlation was found between the contact angle and the CHF. Although the boiling time needed to achieve the maximum CHF enhancement was less than a minute at high particle concentrations, a longer time of the order of 1 h was necessary at the lowest particle concentration tested in this work. This experimental result indicated that sufficient attention should be paid to the boiling time effect particularly in industrial applications of nanofluids to emergency cooling.  相似文献   

15.
Boiling heat transfer performance of nanofluid has been studied during the past few years. Some controversial results are reported in literature about the potential impact of nanofluids on heat transfer intensification. Whereas the mixtures of ethylene glycol and water are considered the most common water-based antifreeze solutions used in automotive cooling systems, the present study is an experimental investigation of boiling heat transfer of CuO/ethylene glycol–water (60/40) nanofluids. The results indicate that a considerable boiling heat transfer enhancement has been achieved by nanofluid and the enhancement increases with nanoparticles concentration and reaches 55% at a nanoparticles loading of 0.5%.  相似文献   

16.
Pool boiling experiments with small diameter wires were conducted in earth gravity and microgravity conditions. Bare wire and fouled wire with a scale deposition of calcium carbonate was used. The wettability on the scale wire was higher than that on the bare wire. Though more vigorous bubbling was observed on the scale wire when compared to that on the bare wire at the same heat flux, the boiling curve for the scale wire was approximately the same as that on the bare wire. However, the critical heat flux (CHF) on the scale wire was higher than that of the bare wire. On the scale wire, the departure diameter of bubbles was relatively smaller than that on the bare wire. The smaller diameter of bubbles detaching from the scale wire is considered to be due to the high wettability and high nucleation site density. As the result, the coalescence of bubbles near the wire was prevented, and the CHF was delayed and increased on the scale wire when compared to that on the bare wire. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(5): 316–329, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20016  相似文献   

17.
This paper presents a new numerical model, called the CAS model, for boiling heat transfer. The CAS model is based on the cellular automata (CA) technique that is integrated into the popular SIMPLER algorithm for CFD problems. In the model, the CA technique deals with the microscopic nonlinear dynamic interactions of bubbles while the traditional CFD algorithm is used to determine macroscopic system parameters such as pressure and temperature. The popular SIMPLER algorithm is employed for the CFD treatment. The model is then employed to simulate a pool boiling process. The computational results show that the CAS model can reproduce most of the basic features of boiling and capture the fundamental characteristics of boiling phenomena. The heat transfer coefficient predicted by the CAS model is in excellent agreement with the experimental data and existing empirical correlations.  相似文献   

18.
The pool boiling characteristics of dilute dispersions of alumina nanoparticles in water were studied. Consistent with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). During experimentation and subsequent inspection, formation of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly changes surface texture of the heater wire surface which could be the reason for improvement in the CHF value. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20301  相似文献   

19.
For three pure fluids and their two- and three-component mixtures, heat transfer coefficients were measured in nucleate pool boiling on the upward facing copper surface of 40 mm diameter. The more-, moderate- and less-volatile components in mixtures are refrigerants R-134a, R-142b and R-123, respectively. Heat transfer coefficients of mixtures were less than the interpolated heat transfer coefficients between pure components, with more reduction at higher heat flux. Two correlations originally developed for two-component mixtures by Thome and Shakir and by Fujita and Tsutsui reproduced well the measured heat transfer coefficients of three- as well as two-component mixtures. This result implies that the boiling range included in the correlations accounts for heat transfer reduction in mixture boiling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号