首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tin oxide(SnO_2) and fluorine doped tin oxide(FTO) films were prepared on glass substrates by sol-gel spin-coating using SnCl_4 and NH_4F precursors.Fluorine doping concentration was fixed at 4 at%and 20 at%by controlling precursor sol composition.Films exhibited the tetragonal rutile-type crystal structure regardless of fluorine concentration.Uniform and highly transparent FTO films,with more than 85%of optical transmittance,were obtained by annealing at 600℃.Florine doping of films was verified by analyzing the valence band region obtained by XPS.It was found that the fluorine doping affects the shape of valence band of SnO_2 films.In addition,it was observed that the band gap of SnO_2 is reduced as well as the Fermi level is upward shifted by the effect of fluorine doping.  相似文献   

2.
Using organo-tin Sn(OC4H9)4 as precursor, sodium dodecyl sulfonate (SDS) and SDS-gelatin (SDS-G) complex as template, two tin dioxide colloidal particles were prepared by a self-assembly method. Both SnO2 products were respectively labelled SnO2-B particles with SDS and SnO2-C particles with SDS-G, which are applied in fabricating SnO2 gas sensors corresponding to SnO2-B’ and SnO2-C’ sensors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetry and different thermal analysis (TG/DTA) were used for characterizations. The experimental results show that SnO2-B colloidal particles are composed of mesoporous piece-like particles, while SnO2-C particles mainly consist of spherical particles. Gas sensing measurements show that SnO2-B’ sensor performs the best sensing response to all target gases, including H2, C2H5OH and liquid petroleum gas (LPG). In particular, the sensing response of SnO2-B’ sensor is achieved at 32 in H2 atmosphere at the concentration of 1000×10-6 M. The gas sensing mechanism was purposely discussed from the electron transfer process and the microstructures of the as-prepared SnO2 products. It is found that serious agglomerations in SnO2-B’ particles facilitate the high gas sensing performance of SnO2-B’ sensor, while mesoporous structures in SnO2-C’ particles decrease the gas sensing response of SnO2-C’ sensor.  相似文献   

3.
Calcium phosphate fiber was synthesized by homogeneous precipitation method using urea as precipitation agent. Effects of the reactant concentration and hydrothermal temperature on the calcium phosphate morphology and composition were studied using SEM, FTIR and XRD. It is found that fine octacalcium phosphate(OCP)fiber can be synthesized when the reactant concentrations are 0.167 mol/L for Ca(NO3)2, 0.1 mol/L for (NH4)2HPO4, and 0.6-0.7 mol/L for (NH2)2CO, respectively, with the initial reactant solution pH value around 2.2, hydrothermal temperature 90 ℃ and termination reaction at pH value around 5.0. At very low urea concentration, the product size distribution is highly inhomogeneous, however, at an excessively high concentration the product becomes larger and shorter and a mixture of OCP and hydroxyapatite (HA). Increasing the hydrothermal temperature is favorable to the fast precipitation of OCP, higher productivity and finer product.  相似文献   

4.
Fading mechanism of tin dioxide (SnO2) electrodes in lithium ion batteries has attracted much attentions, which is of great importance for the battery applications. In this paper, electrochemical lithiation-delithiation cycles of individual SnO2 nanowires were conducted in situ in a high-resolution transmission electron microscopy (TEM). Major changes in volume with expansions of 170%~300% on SnO2 nanowire electrodes were observed during the first lithiation process in electrochemical cycling, including conversion reaction of SnO2 precursor to Li2O matrix and active lithium host Sn, and alloying of Sn with Li to form brittle Li-Sn alloy. SnO2 nanowire electrodes were inclined to suffer from thermal runaway condition in the first two cycles. During cycling, morphology and composition evolution of SnO2 nanowire electrodes were recorded. Cyclic lithiation and delithiation of the electrode demonstrated the phase transition between Li13Sn5 and Sn. Metallic Sn clusters were formed and their sizes enlarged with increasing cycle times. Detrimental aggregation of Sn clusters caused pulverization in SnO2 nanowire electrodes, which broke the conduction and transport path for electrons and lithium ions. The real-time in situ TEM revealed fading mechanism provides important guidelines for the viable design of the SnO2 nanowire electrodes in lithium ion batteries.  相似文献   

5.
The template effect controlling the structure and morphology of ultrafine particles was described. Ni(OH)2 powders were prepared by NH3 coordination-precipitation method. The effects of SO 4 2− , NO 3 , Cl, NH3, pH value on Ni(OH)2 structure and morphology were investigated experimentally, explained with the theoretical model that the growth units were the polyhedral structure of coordination anions. The results showed that the structure and morphology of Ni(OH)2 were effectively controlled by the growth units, the dimensions and the linking patterns of the growth units vary with the changes of physical and chemical conditions in the aqueous solution. Foundation item: The National Natural Science Foundation of China(No.59774018) Biography of the first author: LIU Zhi-hong, professor, born in 1963, majoring in hydrometallurgical technology and control of structure and morphology of powders.  相似文献   

6.
Three different methods were applied to study the alkali content of gelpores in cement. In the closed system, the concentration of K+, Na+ and OH have not reduced with the increase of age. In the open system, the diffusion and transferring of K+ and Na+ towards free space leads to the decrease of total alkali content. In the micro-analysis system, the contents of K+ and Na+ in the first hydrated layer of ground granulated blastfurnace slag (GBFS) are very low, while the contents of calcium and magnesium are relatively high. This phenomenon shows that the mechanism of GBFS preventing alkali aggregate reaction (AAR) is: when GBFS is dissolved by alkali medium, SiO2 and Al2O3 are dissolved into the cement matrix, then around GBFS particles form reaction rings rich in Ca2+ and Mg2+, and the C-S-H gel of positive charges formed in the area repulses K+ and Na+, which are forced to transfer to the mortar’s matrix, pore or mortar sample surface. The transferred K+ and Na+ form alkali gel products with other dissolved ions, then become evenly distributed in the mortar sample and react with Ca(OH)2 in pore solutions to form (Na,K) x−2z ·zCa·(SiO2)y·(OH)x gel products; and thus changes the AAR gel products’ structure. The gel products will not expand, and so they can delay expansion destruction.  相似文献   

7.
The Ytterbium doped gadolinium gallium garnet [Yb3+:Gd3Ga5O12, Yb:GGG] precursor powders were synthesized via homogeneous precipitation method using Yb2O3, Ga2O3, Gd2O3 and ammonium bicarbonate [NH4HCO3] as precipitator, and ammonium sulfate [(NH4)2SO4] as additive. The evolution of phase composition and micro-structure of the powders were characterized by — TG DTA, XRD, IR, and TEM. The results indicate that all precursor powders completely transform to Yb:GGG phase by calcining at 900 °C for 8 h, the resultant powders are well dispersed and have smaller particle size approximately 80 nm owing to the electrostatic effect.  相似文献   

8.
Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnCl2·2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I–V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.  相似文献   

9.
The effect of tin on synthesis of Ti3AlC2 by spark plasma sintering (SPS) from TiC/Ti/Al powders was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for phase identification and microstructure evaluation. The experimental results show that addition of tin can considerably accelerate the synthesis reaction of Ti3AlC2 and fully dense, essentially single-phase polycrystalline Ti3AlC2 could be successfully obtained by sintering 2TiC/1Ti/1Al/0.2Sn powders at 1200–1250 °C under a pressure of 30 MPa. SEM images show that Ti3AlC2 samples in about 2–5 μm thick and 10–25 μm long platelets can be obtained. The fracture toughness and flexural strength of Ti3AlC2 were 6.5±0.2 MPa·m1/2 and 560±10 MPa, respectively. Funded by the National Natural Science Foundation of China (No.20771088, No.50572080) and Doctoral Foundation of Wuhan University of Technology (No.471-38650142)  相似文献   

10.
In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array(Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO_3 at 80 °C followed by NH_4OH titration for Mg(OH)_2 precipitation was demonstrated. In this study, crystalline Mg(OH)2 nanopowders have been synthesized by solvothermal reaction method using(Mg(NO_3)_2á6H_2O) which were obtained from serpentinite, NH4 OH as a precipitator, and hydroxyethylated nonylphenol as surface-active substance. Microstructure and phase composition of samples were investigated employing scanning electron microscopy(SEM) and transmission electron microscopy(TEM), X-ray phase analysis(XRD), and inductively coupled plasma optical emission spectroscopy(ICP-OES). XRD reveals that Mg(OH)2 nanopowder with high purity has the brucite structure. It was found that crystalline Mg(OH)_2 nanopowders exclusively consist of lamellar-like structures and the sizes of Mg(OH)_2 are 30–265 nm length or width.  相似文献   

11.
The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2 h, the Bi203 powders with 60 nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi^3 to O^2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.  相似文献   

12.
By means of 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) combined with deconvolution technique, X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions (viz. 5 wt% Na2SO4, MgSO4, Na2SO4+NaCl and Na2SO4+NaCl+Na2CO3) on C-S-H microstructure in Portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO4 solution, Mg2+ promotes the decalcification of C-S-H by SO 4 2- ,increasing silicate tetrahedra polymerization and mean chain length (MCL) of C-S-H. However, the substituting degree of Al3+ for Si4+ (Al[4]/Si) in the paste does not change evidently. Effect of Na2SO4 solution on C-S-H is not significantly influenced by NaCl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO 4 2- and CO 3 2- attack, as well as the activation of fly ash by SO 4 2- attack will increase the MCL and Al[4]/Si, which are both higher than that under Na2SO4 corrosion, MgSO4 or Na2SO4 +NaCl coordination corrosion.  相似文献   

13.
1 INTRODUCTIONGoldisquitestableanddifficulttodissolveinacommonmineralacid .However ,becausethereisadelectroniclayerunfilledingoldatomicstructure ,goldcanbecombinedwithmanychemicalagentstoformstablecomplexions,causingthepotentialofgoldinasolutiontodecreaseandgoldtodissolveinthesolutioneasily .Basedonthisprinciple ,cyanideisanefficientlixiviatingagentofgold ,andhasbeenwidelyusedtoextractgoldfrom primaryandsecondaryresources .However ,itisthemosttoxicandnotbeneficialtoen vironmentprotection…  相似文献   

14.
Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 °C and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0–1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO10601—2007).  相似文献   

15.
1 INTRODRCTIONWithregardtothestudyofcrystalgrowthunits,researchersmainlyconcentrateonthedissolutionofsolute ,theformationofgrowthunitsandthetransportationofthecrystalgrowthunittotheinterface ,aswellasthecongruencyofthegrowthunitsontheinter facesofthecry…  相似文献   

16.
A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthesized powders were characterized by XRD, SEM and DSC-TG analysis. In the process, single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180 ℃, with NaOH of 0.15 mol/L, in contrast to 200 ℃ and 4 mol/L for conventional hydrothermal route. Meanwhile, the micro-morphology of synthesized BiFeO3 powders changed with different reaction temperatures and concentrations of NaOH. The N6el temperature, Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301 ℃, 828 ℃ and 964 ℃, respectively. The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process.  相似文献   

17.
Steel bar corrosion on electrolytes and the influence of cation were investigated. Three electrolytes of Ca(OH)2, NaOH and KOH with pH levels of 12.5, 11.5, 10.5, 9.5, 8.5 were prepared, meanwhile, the methods of free corrosion potential and electrochemical impedance spectra (EIS) were used to evaluate the influence of cations on the depassivation of the steel bar in electrolytes. The experimental results indicate that the initial corrosion pH value of the steel bar is influenced by the cation in electrolyte and the influence of K+ in electrolyte is the most remarkable, followed by Na+ and Ca2+. The initial corrosion pH values are 10.5 in KOH electrolyte, 9.5 in NaOH electrolyte and lower than 8.5 in Ca(OH)2 electrolyte.  相似文献   

18.
Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition, spectrum selectivity of bismuth-doped tin dioxide and the phase transition of Bi-Sn precursor at different temperatures were studied by means of X-ray diffraction, transmission electron microscopy, ultraviolet-visual-near infrared diffuse reflection spectrum and the thermogravimetric-differential scanning calorimetry. The results show that prepared bismuth-doped tin dioxide powders have excellent characteristics with a single-phase tetragonal structure, good dispersibility, good absorbency for ultraviolet ray and average particle size less than 10 nm. The optimum conditions for preparing bismuth-doped tin dioxide nanometer powders are as follows: calcining temperature of 600℃, ratio of bismuth-doped in a range of 0. 10 - 0.30, and Bi-Sn precursor being dispersed by ultrasonic wave and refluxed azeotropic and distillated with mixture of n-butanol and benzene. The mechanism of phase transition of Bi-Sn precursor is that Bi^3+ enters Sn-vacancy and then forms Sn-O-Bi bond.  相似文献   

19.
Simultaneous equilibrium was applied to the thermodynamic analysis and calculation of Bi( Ⅲ )-X(Cl- ,NO3- )-H2O systems, based on which the diagrams of the logarithm of equilibrium concentration of Bi( Ⅲ ) of series precipitation vs pH value of these two systems at 25 ℃ were obtained, and the pH ranges of the stable zones of various precipitations were analyzed and determined. In Bi( Ⅲ )-Cl -H2O system, the variations of c0 (Bi3 ) and c0 (Cl-) have little effect on the equilibria of Bi(OH)3-solution and BiOOH-solution, but has great influence on the equilibrium of BiOCl-solution. However, in Bi( Ⅲ )-NO3-H2O system, the variations of c0 (Bi3 ) and C0 (NO3-)have little effect on equilibria of Bi(OH)3-solution, BiOOH-solution and Bi2O3-solution. When pH value is high,Bi2O3 is the thermodynamic stable phase, its stable zone is the widest, almost including the stable zones of BiOCl or BiONO3, Bi(OH)3 and BiOOH. Bi(OH)3 cannot be obtained from Bi( Ⅲ )-Cl--H2O system, even strong alkaline media. Bi2O3 can be obtained from the solution directly, and highly pure BiOCl or BiONO3 can also be obtained through strictly controlling pH value.  相似文献   

20.
1 IntroductionThe use of fly ashto control the expansion dueto al-kali-silica reaction (ASR) is well established and a num-ber of reviews have been published recently[1-4]. Howflyash brings about this reductionin expansionis not yet un-derstood although a number of theories have been put for-ward to explain its action. For controlling mechanism,they put more emphasis onthe adsorption andresort of al-kali by supplementary cementing material (SCM) , formore acidity oxide in SCM,and the secon…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号