首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
齿轮系统动态传递误差和振动稳定性的数值研究   总被引:11,自引:0,他引:11  
建立了计及轮齿时变啮合刚度、啮合阻尼、支承刚度和阻尼的齿轮系统扭转-横向振动耦合的3自由度动力学模型。用数值仿真方法,研究了重合度、支承刚度、啮合阻尼和支承阻尼对齿轮动态传递误差和动力稳定性的影响。研究结论对于高速、精密齿轮传动的动力学设计具有积极意义。  相似文献   

2.
分析了具有斜齿圆柱齿轮传动的多平行轴转子系统,在统一的坐标系下,建立了系统的动力学模型,考虑了系统的弯扭耦合、陀螺力矩及滑动轴承的支承刚度和阻尼。计算了系统的固有频率、动态响应及幅频特性,重点分析了齿轮的刚度、阻尼和制造误差对多平行轴转子系统动力学性能的影响  相似文献   

3.
为了分析基于齿背接触刚度的高速斜齿轮瞬态振动放大特性,针对高转速瞬态工况下斜齿轮齿面啮合-脱啮-齿背接触的齿面实际承载接触状态,建立了同时考虑啮合时间与齿面振动位移耦合机理的斜齿轮动态啮合刚度。在细化考虑齿背啮合机理、基于齿背实际啮合刚度的模型基础上,进一步建立斜齿轮啮合型瞬态振动模型,并在此基础上展开不同齿侧间隙以及齿背接触对系统瞬态振动特性影响分析研究。搭建封闭功率流式斜齿轮瞬态扭转振动测试试验台,对基于齿背接触刚度的斜齿轮瞬态振动特性进行了验证。该研究具有较好的理论研究意义,有利于斜齿轮传动系统在航空传动、新能源传动系统上的应用推广,进一步提升高转速齿轮系统的瞬态振动噪声品质。  相似文献   

4.
Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.  相似文献   

5.
In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.  相似文献   

6.
建立了两级星型齿轮传动系统的非线性动力学分析模型,模型中考虑了系统的综合啮合误差、时变啮合刚度以及齿侧间隙。推导了多自由度多间隙系统的增量谐波平衡法计算公式,利用上述方法求解了系统非线性微分方程组,得到了两级星型齿轮传动的非线性频响特性。分析了阻尼系数、时变啮合刚度以及误差等参数对系统动态特性的影响。分析结果表明:间隙会使两级星型齿轮传动系统中出现多值解及跳跃现象的典型非线性特征;增大系统阻尼系数可以抑制系统的共振幅值;增大时变刚度幅值使得齿轮副传动误差的幅值增大;增大激励误差的幅值,使得系统各构件的振动幅值增大;多级星型齿轮传动系统有着比单级传动更丰富的非线性动态特性。  相似文献   

7.
针对齿轮副非线性振动问题展开研究,综合分析了啮合冲击激励、时变啮合刚度和误差激励对齿轮系统振动的影响。根据扭转啮合刚度定义,分别建立了无齿面缺陷和有齿面缺陷的齿轮三维接触仿真分析模型。计算了两种运行状态下,不同接触位置上的扭转啮合刚度。在进行齿轮副非线性振动的分析时,综合考虑了啮合冲击激励、时变啮合刚度和误差激励等非线性因素,建立了齿轮副非线性动力学模型,采用变步长四阶Runge-Kutta数值积分方法求解了系统的动态响应。  相似文献   

8.
Gear backlash is a nonlinear effect of the gear system. In a spur gear system with the backlash, the initial position of gears with the backlash affects the impact force. This work conducted a dynamic analysis of the spur gear system with time-varying mesh stiffness and bearing stiffness with a focus on the initial gear position within the backlash. For this purpose, the time-varying stiffness of the gears and rolling bearings were calculated. Mesh force with the time-varying stiffness and the gear backlash was applied to four DOF equations of motion. The equations of motion were solved using the Newmark beta method and Newton-Raphson method. The dynamic characteristics of the spur gear system by the initial position of gears within the backlash were investigated along with the magnitude of the backlash. The results showed that as the backlash increased, the mesh and bearing forces increased as well. The mesh and bearing forces were highly dependent on the initial gear position within the backlash. Significant initial mesh and bearing forces by the initial gear position within the backlash can lead to cumulative damages to the gear system.  相似文献   

9.
Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.  相似文献   

10.
含间隙的斜齿轮副扭振分析与试验研究   总被引:2,自引:0,他引:2  
建立了科齿轮副的间隙型非线性扭振模型,其中考虑了斜齿轮副的啮合综合误差,齿侧间隙和时变啮合刚度。采用三维有限元法计算了斜齿轮副啮合刚度,用三次样条插值拟合得到时变啮合刚度函数。用数值积分方法对系统的非线性动力学微分方程进行了求解,获得了斜齿轮副在外转矩作用下受静态传动误差激励的非线性稳态强迫响应,并对系统的动态响应进行了测试,试验和理论计算结果了一致性证实了本文所提出模型和解法的正确性。  相似文献   

11.
Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.  相似文献   

12.
A non-linear lumped kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps is presented. It takes into account the most important phenomena involved in the operation of this kind of machines. Two main sources of noise and vibration can be considered: pressure and gear meshing. Fluid pressure distribution on gears, which is time-varying, is computed and included as a resultant external force and torque acting on the gears. Parametric excitations due to time-varying meshing stiffness, the tooth profile errors (obtained by a metrological analysis), the backlash effects between meshing teeth, the lubricant squeeze and the possibility of tooth contact on both lines of action were also included. Finally, the torsional stiffness and damping of the driving shaft and the non-linear behaviour of the hydrodynamic journal bearings were also taken into account. Model validation was carried out on the basis of experimental data concerning case accelerations and force reactions. The model can be used in order to analyse the pump dynamic behaviour and to identify the effects of modifications in design and operation parameters, in terms of vibration and dynamic forces.Part I is devoted to the calculation of the gear eccentricity in the steady-state condition as a result of the balancing between mean pressure loads, mean meshing force and bearing reactions, while in Part II the meshing phenomena are fully explained and the main simulation results are presented.  相似文献   

13.
A non-linear lumped kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps is presented. It takes into account the most important phenomena involved in the operation of this kind of machines. Two main sources of noise and vibration can be considered: pressure and gear meshing. Fluid pressure distribution on gears, which is time-varying, is computed and included as a resultant external force and torque acting on the gears. Parametric excitations due to time-varying meshing stiffness, the tooth profile errors (obtained by a metrological analysis), the backlash effects between meshing teeth, the lubricant squeeze and the possibility of tooth contact on both lines of action were also included. Finally, the torsional stiffness and damping of the driving shaft and the non-linear behaviour of the hydrodynamic journal bearings were also taken into account. Model validation was carried out on the basis of experimental data concerning case accelerations and force reactions. The model can be used in order to analyse the pump dynamic behaviour and to identify the effects of modifications in design and operation parameters, in terms of vibration and dynamic forces.Part I is devoted to the calculation of the gear eccentricity in the steady-state condition as result of the balancing between mean pressure loads, mean meshing force and bearing reactions, while in Part II the meshing phenomena are fully explained and the main simulation results are presented.  相似文献   

14.
综合考虑齿轮啮合刚度、传动误差、齿侧间隙和轴承等因素的影响,基于Romax Designer软件建立了某电动车减速器的齿轮传动系模型,并对其进行了振动特性分析;将减速器壳体有限元模型导入Romax中,建立了考虑壳体柔性的减速器齿轮一壳体刚柔耦合模型,并将其振动特性与齿轮系进行了对比分析。结果表明,考虑壳体柔性后,系统的固有特性发生较大改变,齿轮传递误差值、系统振动响应和轴承动载荷等均有所降低。  相似文献   

15.
振动大、噪声高是三环齿轮传动存在的突出问题,线性的振动模型无法完全解释其动力学行为。在考虑输入轴和支承轴的弹性、齿轮啮合综合误差、时变啮合刚度以及齿侧间隙的情况下,建立了三环齿轮传动的弯扭耦合非线性动力学模型。采用适当的坐标变换,将线性恢复力和非线性恢复力共存的动力学方程组转化为统一的矩阵形式,并对方程进行量纲一化处理,为进一步研究三环齿轮传动的非线性动力学行为打下基础。  相似文献   

16.
针对火炮回转轴承存在游隙、回转齿圈与方向机齿轮啮合存在齿侧间隙的实际,基于虚拟样机技术,研究了考虑轴承游隙和齿侧间隙的方向机力建模方案。给出了回转轴承径向支撑刚度和齿轮啮合刚度计算方法,啮合刚度的计算考虑了齿轮模数、齿宽、重合度等结构参量的影响。最后建立考虑回转间隙的某型火炮的发射动力学模型并进行了仿真,仿真结果为:轴承游隙和齿侧间隙均对炮口的横向运动产生影响,但齿侧间隙的影响比轴承游隙的影响更显著,在考虑两个间隙共同作用时,齿侧间隙是引起炮口横向运动的主要因素,且其幅值变化在前期随间隙的增大而增大,而在后期存在较强的非线性。  相似文献   

17.
履带车辆齿轮传动系统非线性振动特性研究   总被引:1,自引:1,他引:1  
以齿轮系统动力学和非线性振动理论为基础,针对具有齿侧间隙和时变啮合刚度的某履带车辆齿轮传动系统,建立单自由度齿轮系统非线性振动模型,通过数值仿真方法求解并分析在不同档位下的振动特性,并对其在某些变量参数下进行了振动特性研究,所得结果既反映了动力学性能,又为下一步进行多自由度齿轮系统的非线性振动研究提供了有力的依据.  相似文献   

18.
考虑随机制造误差的风力机行星齿轮系统动力学特性   总被引:5,自引:0,他引:5  
为研究综合传递误差的随机波动对风力发电机齿轮传动系统动力学特性的影响,考虑齿轮时变啮合刚度、综合传递误差等因素,建立风力发电机行星齿轮传动系统纯扭转动力学模型。以随机风速引起的齿轮系统转矩波动作为行星齿轮系统的外部激励,对某1.5 MW风力发电机行星齿轮传动系统的动力学特性进行仿真分析,得到系统各响应量时域内的统计特征和齿轮副间的动态啮合力统计特征。分析表明:行星架、行星轮和太阳轮在扭转方向上的振动特性与外部载荷相关,其振动位移与外部载荷波动有相似变化的趋势;综合传递误差随机分量的离散程度对行星齿轮系统的动态特性和齿轮副间的动态啮合力有较大影响。随着综合传递误差随机分量离散程度的增加,行星架、太阳轮和行星轮在扭转方向上的振动幅值明显增加;综合传递误差随机分量的随机性使齿轮副间动态啮合力产生随机波动,随机分量离散程度越大,动态啮合力波动越明显;当随机分量的离散程度达到某一值时,齿轮啮合过程发生脱离,引发啮合冲击。  相似文献   

19.
汤鱼  常山  王志强  宿吉鹏 《机械传动》2011,35(10):35-37,41
为了分析齿轮啮合刚度、支承刚度对行星传动系统振动特性的影响,建立了基于人字齿行星传动的平移一扭转耦合的动力学模型.在动力学模型中,每个运动构件假定有3个自由度,同时考虑各构件的支承刚度、轮齿时变啮合刚度等影响因素.根据各构件的运动方程建立传动系统的动力学微分方程,并对其进行特征值问题求解,获取行星传动系统振动特性.  相似文献   

20.
Time-dependent mesh stiffness is a most important reason of vibration and dynamic excitation in gear sets. In this research, analytical formulas of the helical gear set and the planetary gear system are combined to calculate the time-dependent mesh stiffness of the helical planetary gear system. For this purpose, at the first step, the analytical equations are derived for the spur gear pair. Then by dividing a helical tooth into the several independent thin spur tooth slices, the helical gear pair mesh stiffness is extracted. Finally, these equations are extended to the helical planetary gear system. The suggested analytical results and those which obtained by the finite element method (FEM) are compared and are in good agreement when the helix angle is less than 15 degrees. Also, the helical planetary gear system mesh stiffness in different cases such as fixed carrier, fixed sun gear and fixed ring gears is calculated. These results show that the value of mesh frequency ratio in each case scales the mesh stiffness shapes in the rotation angle direction. In other words, mesh frequency ratio parameter determines the number of meshing period in each rotation of planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号