首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
The long-term stability of NiCoZn coating for hydrogen evolution reaction (HER) was investigated in 1 M KOH solution under 100 mA cm−2 current density at room temperature. The effect of electrolysis on the corrosion behavior of NiCoZn coating was also studied. The alloy prepared on a copper electrode (Cu/NiCoZn) was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the HER. The bulk and surface compositions of coating before and after alkaline leaching were determined by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analysis. The surface morphologies of freshly prepared and aged electrodes were investigated by scanning electron microscopy (SEM). Their catalytic activity towards the HER was assessed by recording cathodic current–potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the NiCoZn coating has a compact and porous structure. The long-term operation at 100 mA cm−2 current density showed that the electrochemical activity of Cu/NiCoZn electrode increased slightly with increasing electrolysis time. The activation of electrode related to the removal of any existing corrosion products and accumulations from the pores and formation of cracks during hydrogen gas evolution. The corrosion tests showed that the corrosion resistance of Cu/NiCoZn electrode changed after electrolysis.  相似文献   

2.
The NiCuZn ternary coating was electrochemically deposited on a copper electrode. Then, it was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the hydrogen evolution reaction (HER). The surface composition of coating before and after alkaline leaching was determined by energy dispersive X-ray (EDX) analysis. The surface morphologies were investigated by scanning electron microscopy (SEM). The long-term stability of electrode prepared for alkaline water electrolysis was investigated in 1 M KOH solution with the help of cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that, the NiCuZn coating has a compact and porous structure with good physical stability. Alkaline leaching process further improved the activity of NiCuZn coating in comparison with binary NiCu deposit for the HER. The long-term operation at −100 mA cm−2 showed good electrochemical stability over 120 h.  相似文献   

3.
A Platinum-modified alloy coating with high hydrogen evolution reaction (HER) durability activity was prepared by electrodeposition. The durability of this catalyst was determined with electrolysis technique for 120 h. The prepared electrode was characterized by energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Long-term electrolysis was carried out in 1 M KOH solution by cathodic current–potential curves and electrochemical impedance spectroscopy (EIS). Experimental result showed that CoZn–Pt coating has a rough structure and presents good stability and high durability. Electrochemical activity increases slightly with increasing electrolysis time. High durability of Pt modified cathode was attributed to the high surface area and synergistic interaction between Co, Zn and Pt.  相似文献   

4.
NiCu alloy catalysts for alkaline water electrolysis were prepared by an electrodeposition method varying the alloy composition. When the deposition potential became more positive, the bulk and surface Cu content in NiCu alloys as well as the catalyst particle size gradually increased, which were confirmed by various spectroscopic and electrochemical techniques. The surface coverage of the catalysts was found to be a function of the deposition potential, as well. The catalytic activities of the prepared NiCu alloys to hydrogen evolution reaction (HER) were investigated with cyclic voltammetry in a 6.0 M KOH electrolyte at 298 K, and the mass activities of NiCu alloys were correlated with bulk and surface Cu contents to investigate the Cu alloying effect.  相似文献   

5.
The film of poly(8-hydroxyquinoline) was formed by cyclic voltammetery method on the surface of glassy carbon electrode and poly(8-hydroxyquinoline) modified glassy carbon electrode, p(8-HQ)MGCE, was prepared. Cu2+ ion was adsorbed on the polymer matrix due to complexation with 8-hydroxyquinoline units Copper nanoparticles were deposited onto p(8-HQ)MGCE by applying potential and prepared copper nanoparticles galvanic replaced with platinum to fabricate poly(8-hydroxyquinoline)–Pt/Cu composite on the surface of GCE. Stripping voltammetery of Cu in aqueous 0.1 M KSCN + Britton–Robinson buffer, pH = 2.0, solution was used to quantify the copper present on the electrode surface. The amount of platinum was estimated from the electrooxidation peak of Pt in aqueous 0.1 M H2SO4 solution. The nature of Cu/Pt–p(8-HQ) on the surface of GCE was characterized by scanning electron microscopy. Cu/Pt–p(8-HQ) modified GCE can be used as a convenient conducting substrate for electrocatalytic hydrogen evolution reaction (HER). The effects of different parameters such as number of cycles, replacement time, scan rate of potential, and etc were investigated to obtaining optimum condition for HER.  相似文献   

6.
In this study, the contact resistance (CR) and electrochemical properties of TiN, CrN and TiAlN electron beam physical vapor deposition (EBPVD) coatings and their stainless steel 316L (SS316L) substrate were investigated in a simulated proton exchange membrane (PEM) fuel cell environment. The potentiodynamic polarization corrosion tests were conducted at 70 °C in 1 M H2SO4 purged with either O2 or H2, and the potentiostatic corrosion tests were performed under both simulated cathodic (+0.6 V vs. Ag/AgCl reference electrode purged with O2) and anodic conditions (−0.1 V vs. Ag/AgCl reference electrode purged with H2) for a long period (4 h). SEM was used to observe the surface morphologies of the samples after corrosion testing. All the TiN-, TiAlN- and CrN-coated SS316L showed a lower CR than the uncoated SS316L. While the corrosion performance of the coatings was dependent on the cathodic and anodic conditions, the CrN coating exhibited a higher (in the anodic environment) or similar (in the cathodic environment) corrosion resistance to the uncoated SS316L. Thus, the CrN-coated SS316L could potentially be used as a bipolar plate material in the PEM fuel cell environment. Although the EBPVD process greatly reduced number of pinholes in the coatings compared to other plasma enhanced reactive evaporations, future research efforts should be directed to eliminate the pinholes in the coatings for long-term durability in fuel cell applications.  相似文献   

7.
Hydrogen evolution reaction (HER) (cathodic reaction) of mild steel immersed in H2SO4 acid was investigated. Electrochemical corrosion behavior and hydrogen evolution reaction of mild steel has been investigated using different electrochemical techniques. Steel was polarized vs. saturated calomel electrode (SCE) in naturally aerated 1.0 M H2SO4 aqueous solution containing four organic inhibitors (newly synthesized heterocyclic compounds) of different concentrations. The observed different influence of corrosion inhibitors on the hydrogen evolution reaction was associated with the different chemical composition and structure. Polarization results showed that corrosion current density, icorr, and hydrogen evolution decreases with increasing concentration of inhibitors in 1.0 M H2SO4, indicating a decrease in the corrosion rate. Electrochemical impedance spectroscopy (EIS) measurements confirmed this behavior. An increase of temperature leads to increase in the corrosion or hydrogen evolution rate and a decrease of the total resistance value, RT. The obtained results were confirmed by surface examination.  相似文献   

8.
Thin Co layers were electrochemically deposited on a graphite electrode at different deposition current densities and thicknesses. After determining the best deposition conditions for hydrogen evolution (deposition current density and thickness), co-deposits of Co with Zn were prepared on the graphite electrode. The binary coatings prepared on the graphite electrode (CoZn) were etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the hydrogen evolution reaction (HER). After the leaching process, a low amount of Pt was deposited onto the etched CoZn deposit in order to further improve the catalytic activity of the electrode for the HER. The HER activity is assessed by recording cathodic current-potential curves, electrochemical impedance spectroscopy (EIS) and electrolysis techniques. Chemical composition of layers after alkaline leaching was determined by energy dispersive X-ray (EDX) analysis. The surface morphologies of coatings were investigated by scanning electron microscopy (SEM). It was found that, the HER activity of coatings depends on the metal ratio of Co and Zn, deposition current density and the thickness of coatings. The alkaline leached CoZn coating has a compact and porous structure as well as good electrocatalytic activity for the HER in alkaline media. Moreover, deposition of a low amount of Pt over the CoZn can further enhance its hydrogen evolution activity.  相似文献   

9.
Nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 × 10−6 cm2 s−1 in agreement with the values obtained from CV measurements.  相似文献   

10.
We report on the electrochemical corrosion of a Pt electrode in strong sulfuric acid. The electrochemical measurements were conducted using a Pt-flag working electrode, Ag/Ag2SO4 reference electrode and Pt counter electrode at 25 °C. The measured cyclic voltammograms significantly changed in the H2SO4 concentration range of 0.5–18 mol dm−3, especially from 14 to 18 mol dm−3. After successive potential sweeps for 15 h in 16 mol dm−3 H2SO4, a weight loss of the Pt-flag electrode was realized. In contrast, a controlled potential electrolysis by cathodic polarization caused a weight gain, which was attributed to sulfur deposition by the H2SO4 reduction. The subsequent anodic polarization produced corrosion of the deposited sulfur. Consequently, the alternating polarization generated platinum corrosion, resulted in the production of platinum and sulfur composite particulates in the solution.  相似文献   

11.
Porous Ni3Al intermetallic material with a mean pore diameter of around 1 μm was prepared by step sintering Ni and Al powder pressed compacts in vacuum furnace at 900 °C. The electrocatalytic activity of the as-fabricated porous Ni3Al material as an electrode for hydrogen evolution reaction (HER) in alkaline solutions was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. It is found that the onset potential of porous Ni3Al for HER shifted in the positive direction favoring hydrogen generation with lower overpotential, compared with foam Ni and dense Ni electrodes. Effects of electrolyte concentration and temperature on HER as well as the electrochemical stability in alkaline solution were investigated and the electrochemical activation energy was determined for the porous Ni3Al. The increased activity for HER was attributed to the high porosity, an increased electrochemical surface area and the nanostructure of porous Ni3Al electrode. The corrosion tests showed that the corrosion resistance of porous Ni3Al electrode changed during the immersion process due to the formation of passive film layers.  相似文献   

12.
The molybdenum electrode, Mo, has been investigated for hydrogen production via water electrolysis in 10 vol.% aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate (BMI·BF4) using electrochemical impedance spectroscopy (EIS). The EIS measurements show that the Mo system has much higher interfacial capacitance, and correspondently the electrical double layer formed on this electrode is thicker than those formed on nickel or platinum. The positive displacement of potential of zero charge (PZC) values indicates the specific adsorption of the imidazolium cation on the Mo surface. This study provides an elegant explanation for the better performance of Mo electrodes in the hydrogen evolution reaction (HER): the BMI cation acts as an intermediate for the proton transfer from water to the electrode surface, thereby decreasing the overpotential of HER. This model explains the synergism between Mo and the BMI cation in the HER process.  相似文献   

13.
Ni–Mo–Cu alloy coating electrode was prepared on copper substrate by constant current electrodeposition and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The electrochemical characterization for hydrogen evolution reaction (HER) was investigated by cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves and electrochemical impedance spectroscopy (EIS) techniques. Parameters affecting the electrocatalytic activity for the HER are systematically investigated. Results show the Ni–Mo–Cu coating by the introduction of Cu has a rough and cauliflower-like structure and presents a most efficient activity for HER in comparison with binary Ni–Mo electrode. Its remarkably enhanced catalytic activity is attributed to the high surface area as well as synergistic interaction between Ni, Mo and Cu.  相似文献   

14.
The amorphous Ni–Mo film with high HER (hydrogen evolution reaction) activity was obtained by pulse plating. The optimum electrodeposition conditions with respect to HER overpotential were determined, e.g. Na2MoO4·2H2O concentration, current density and duty cycle. Correspondingly, the compositions and components of the Ni–Mo coatings with various molybdenum contents were investigated systematically. The results showed that when the ratio of nickel and molybdenum concentrations in the electrodeposition bath is lower than 1 (mol%), the molybdenum content in the coating decreases with the increasing Na2MoO4·2H2O concentration, while the corresponding HER overpotential of the Ni–Mo film increases. The amorphous Ni–Mo coating was obtained when the molybdenum content was c.a. 30 mass%, which shows high HER activity (η200 = 62 mV at 200 mA cm−2 and 80 °C) and excellent corrosion resistance. After galvano-static electrolysis for 100 h in 33 mass% NaOH solution, the amorphous structure was destroyed due to the dissolution of molybdenum.  相似文献   

15.
The electro-oxidation of methanol on nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance pattern is studied and a mathematical model was put forward to quantitatively account for the impedance behavior of methanol oxidation. At potentials higher than 0.49 V vs. Ag/AgCl, a pseudoinductive behavior is observed but at higher than 0.58 V, impedance patterns terminate in the second quadrant. The conditions required for this behavior are delineated with the use of the impedance model.  相似文献   

16.
Hydrogen gas (H2) is notified as a renewable energy carrier. It is wanted to discover a low-cost electrocatalyst for the hydrogen evolution reaction (HER) to substitute the high-cost Pt in electrolysis cell. Niobium electrocatalyst nominated to substitute noble materials for electrocatalytic H2 production and its electrochemical manner was estimated in H2SO4 acid of various concentrations utilizing a steady-state polarization and electrochemical impedance spectroscopy (EIS). The influences of acid concentration, cathodic potential and temperature on the H2 creation were examined. The outcomes display that HER on Nb electrode proceeds by the Volmer-Heyrovsky mechanism. EIS tests, under open circuit and under cathodic polarization, were performed and the fitting has been done utilizing a suggested model for the electrode/electrolyte interface. Apparent activation energies (Ea) were estimated to be ca. 10.5 kJ mol?1 for the HER on Nb. Thus, Nb is a good electrocatalyst for the cathodic H2 manufacturing.  相似文献   

17.
Porous Ni-Co-(WC)x ternary composite electrodes were fabricated by means of electrodeposition on a foam Ni substrate. The surface morphology and microstructure of the electrodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrocatalytic properties of porous Ni-Co-(WC)x electrodes for hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution at temperatures from 25 to 50 °C were conducted by means of cathodic polarization, electrochemical impedance spectroscopy (EIS), cyclic voltammetry and chronoamperometry (CA). These Ni-Co-WC electrodes are efficient electrocatalysts for HER. Compared with the porous Ni-Co electrode, the porous Ni-Co-(WC)x electrode exhibited a lower HER overpotential, a lower electrochemical impedance, a lower apparent activation energy and a higher exchange current density. The apparent exchange current density of porous Ni-Co-(WC)x (x = 10, 20, 30 and 40 g/l) is 2.01, 3.01, 7.8 and 19.91 times of porous Ni-Co electrode, respectively. With the increase of WC concentration and temperature, the apparent exchange current density of HER was enhanced. With the increase of WC concentration and potential, the HER resistance and the activation energy decreased. The Ni-Co-(WC)x electrode exhibited superior corrosion resistance and stability for HER.  相似文献   

18.
A bilayer conducting polymer coating composed of an inner layer of polypyrrole (Ppy) with large dodecylsulfate ionic groups obtained by galvanostatic deposition, and an external polyaniline (Pani) layer with small SO42− groups obtained by cyclic voltammetric deposition was prepared to protect type 304 stainless steel used for bipolar plates of a proton-exchange membrane fuel cell. The corrosion performance of the bare and coated steel in 0.3 M HCl was examined by electrochemical impedance spectroscopy, polarization and open-circuit potential measurements. The experimental results indicated that both the composite Ppy/Pani coatings and the single Ppy coatings increased the corrosion potential of the bare steel by more than 400 mV (saturated calomel electrode), and increased the pitting corrosion potential by more than 500 mV (saturated calomel electrode). The bilayer coatings could reduce the corrosion of the alloy much more effectively than the single Ppy coatings, serving as a physical barrier and providing passivity protection, with acceptable contact resistance.  相似文献   

19.
Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high.In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), high area NiCo/Zn electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. After preparing, the alloys were leached of to remove part of the zinc and generate a porous layer (type Raney electrodes). The presence of a thin Ni layer between the substrate and the Raney coating favour the adherence of the latter. The porous NiCo/Zn electrode was characterized by SEM, EDX, confocal laser microscopy, and electrochemical impedance spectroscopy. HER on this electrode was evaluated in 30 wt.% KOH solution by means of polarization curves, hydrogen discharge curves, and galvanostatic tests. Results show that the developed electrode presents a most efficient behaviour for HER when comparing with the smooth Ni cathode. The high electrode activity was mainly attributed to the high surface area of the developed electrode.  相似文献   

20.
To promote Ni electrode performance during water splitting, a novel coating process, High pressure cold spray, is applied to prepare electrodes from blended Ni + Al powder. By controlling Al fraction, electrodes are obtained with varied microstructure. SEM and EDX are implemented to check the micromorphology of electrodes. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) are performed to estimate the effect of Al addition on electrode performance. Resultantly, significant improvement of electrode performance is achieved by increasing the fraction of Al from 10 vol% to 20 vol%. The obtained coatings are found with numerous pores owing to the removal of Al during the activation. By applying electrochemical test, the HER of all samples are dominated by Volmer step, and sample N20A is found with the highest active surface area. Thus, sample N20A exhibits the highest electro-catalytic activity to HER of alkaline water electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号