首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase structures and hydrogen storage properties of the Ca3-xLaxMg2Ni13 alloys were investigated. It was found that the La substitution is unfavorable for the formation of the Ca3Mg2Ni13-type phase. The La-substituted alloys consist of multiple phases. Increasing La content to x = 2.25 leads to a disappearance of Ca3Mg2Ni13-type phase. Among these alloys, the Ca1.5La1.5Mg2Ni13 alloy has highest equilibrium pressures of hydrogen absorption–desorption and a highest hydrogen desorption capacity of 1.34 wt.% at 318 K. The discharge capacity decreases for La-substituted alloys. However, the cycling capacity retention rate (S30) increases from 13.7 to 67.6% when x increases from 0 to 3.  相似文献   

2.
The effect of Mg content on the structural characteristics and hydrogen storage properties of the Ca3.0−xMgxNi9 (x = 0.5, 1.0, 1.5 and 2.0) alloys was investigated. The lattice parameters and unit cell volume of the PuNi3-type (Ca, Mg)Ni3 main phase decreased with increasing Mg content. The 6c site of PuNi3-type structure was occupied by both Ca and Mg atoms. Moreover, the occupation factor of Ca on the 6c site decreased with the increase of Mg content. The hydrogen absorption capacity of the alloys decreased due to higher Mg content. However, the thermodynamic properties of hydrogen absorption and desorption were improved and the plateau pressures were increased. When x = 1.5–2.0, the Ca3.0−xMgxNi9 alloys had favorable enthalpy (ΔH) and entropy (ΔS) of hydride formation.  相似文献   

3.
(Sm1−xDyx)2Zr2O7 (0 ≤ x ≤ 1) ceramics are prepared by a solid state reaction process at 1973 K for 10 h in air. (Sm1−xDyx)2Zr2O7 (0 ≤ x ≤ 0.3) ceramics exhibit a single phase of pyrochlore-type structure, while (Sm1−xDyx)2Zr2O7 (0.5 ≤ x ≤ 1.0) possess a defective fluorite-type structure. The full width at half-maxima in the Raman spectra increases with increasing Dy content, which indicates that the degree of structural disorder increases as the Dy content increases. The ionic conductivity of (Sm1−xDyx)2Zr2O7 ceramics is investigated by impedance spectroscopy over a frequency range of 0.2 Hz to 8 MHz in the temperature range of 873-1173 K in air and hydrogen atmospheres, respectively. The ionic conductivity has a maximum near the phase boundary between the pyrochlore- and the defective fluorite-type phases under identical temperature levels. The ionic conductivity is determined by the degree of structural disorder or unit cell free volume, which is depending on the Dy content. As the ionic conductivity in the hydrogen atmosphere is almost the same as that obtained in air, the conduction of (Sm1−xDyx)2Zr2O7 is purely ionic with negligible electronic conduction.  相似文献   

4.
Ternary Mg1−xCaxNi2−y solid solutions were synthesized by powder sintering. The phase structures and hydrogen storage properties of the sintered samples were investigated. In a certain range of x and y values, the samples are a single C15 Laves phase with various types of defects. The reduction of Ni content leads to the formation of omission solid solution with vacancies on the sites of Ni. These vacancies increase the hydrogen storage capacity, but decrease the reversibility of hydrogen absorption and desorption.  相似文献   

5.
The microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33−xCaxNi2.75Co0.25 (x = 0, 0.05, 0.10 and 0.15) alloys are investigated. The results show that all alloys mainly consist of (La, Mg)Ni3 and LaNi5 phases, besides a small amount of (La, Mg)2Ni7 phase. The cycle stability (S80) after 80 charge/discharge cycles of all alloy electrodes first increases from 60.1% (x = 0) to 64.2% (x = 0.05), then decreases to 45.9% (x = 0.15). The high rate dischargeability of all alloy electrodes first increases from 52.6% (x = 0) to 61.4% (x = 0.10), then decreases to 57.2% (x = 0.15). Moreover, the charge-transfer resistance (Rct) first decreases from 168.2 mΩ (x = 0) to 125.7 mΩ (x = 0.10), then increases to 136.6 mΩ (x = 0.15). All the results indicate that the substitution of Mg with a certain amount of Ca can improve the overall electrochemical characteristics.  相似文献   

6.
Hydrogen in metal hydrides could be one of the promising energy storage mediums to address the intermittent nature of renewable energy. To convert the hydrogen energy to electricity, the storage system has to be coupled with a fuel cells system. Hence, it is important to design a hydrogen storage system that meets the operating requirements for a fuel cell system. In this work, the effects of partial substitution of both cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloys were investigated simultaneously using factorial design. Both Ce and Al additions greatly improved the reversibility of hydrogen storage capacity. However, the maximum hydrogen storage capacity and absorption kinetics can be reduced by the additions. As Ce and Al gave opposite effects on the absorption and desorption plateaus, they could be used to tune the properties of the alloys to the desired operating conditions for fuel cell applications.  相似文献   

7.
The microstructure and electrochemical hydrogen storage characteristics of (La0.7Mg0.3)1−xCexNi2.8Co0.5 (x = 0, 0.05, 0.10, 0.15 and 0.20) alloys have been investigated. The results show that all alloys consist of (La, Mg)Ni3 and LaNi5 phases. The cyclic stability (S100) of the alloy electrodes increases from 58.7% (x = 0) to 69.8% (x = 0.20) after 100 charge/discharge cycles. The high rate dischargeability (HRD) increases from 66.8% (x = 0) to 69.6% (x = 0.10), then decreases to 65.1% (x = 0.20) at the discharge current density of 1200 mA/g. Moreover, the electrochemical kinetic characteristics of the alloy electrodes are also improved by increasing Ce content.  相似文献   

8.
The effects of substitution of Ce for La on the microstructure and electrochemical performance of La0.76−xCexMg0.24Ni3.15Co0.245Al0.105 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys were investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses showed that the main phases of the alloys consist of (La, Mg)Ni3 phase (PuNi3-type rhombohedral structure), LaNi5 phase (CaCu5-type hexagonal structure) and (La, Mg)2Ni7 phase (Ce2Ni7-type hexagonal structure). The cell volume of the (La, Mg)Ni3 phase, (La, Mg)2Ni7 phase and LaNi5 phase decreased monotonously with increasing Ce content. Electrochemical investigations showed a decrease in the discharge capacity, while high rate dischargeability (HRD) first increased and then decreased with increasing Ce content. The Ce substitution for La slightly enhanced the cyclic stability of the alloy electrodes. The pressure–composition (PC) isotherms showed that the plateau region was broadened with Ce content increased in the alloys, meanwhile, two plateaus appeared and pressure of the hydrogen absorption and desorption increased accordingly.  相似文献   

9.
Amorphous Mg65Ni27La8 alloy is prepared by melt-spinning. The alloy surface is modified using different contents of graphite to improve the performances of the Mg65Ni27La8 electrodes. In detail, the electrochemical properties of (Mg65Ni27La8) + xC (x = 0–0.4) electrodes are studied systematically, where x is the mass ratio of graphite to alloy. Experimental results reveal that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy, reduces the contact resistance of the electrodes and obstructs the formation of Mg(OH)2 on the alloy surface. An optimal content of graphite has been obtained. The (Mg65Ni27La8) + 0.25 C electrode has the largest discharge capacity of 827 mA h g−1, which is 1.47 times as large as that of the electrode without graphite, and the best electrochemical kinetics. Further increasing of graphite content will lead to the increase of contact resistance and activation energy for charge-transfer reaction of the electrode, resulting in the degradation of electrode performance.  相似文献   

10.
(Sm1−xCax)2Zr2O7−x (0 ≤ x ≤ 0.100) ceramics were prepared by a solid state reaction process at 1973 K for 10 h in air, and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). (Sm1−xCax)2Zr2O7−x (0 ≤ x ≤ 0.025) ceramics have a single phase of pyrochlore-type structure; however (Sm1−xCax)2Zr2O7−x (0.050 ≤ x ≤ 0.100) consist of pyrochlore phase and a small amount of perovskite-like CaZrO3. The electrical conductivity of (Sm1−xCax)2Zr2O7−x ceramics was investigated by complex impedance spectroscopy over a frequency range of 0.1 Hz to 20 MHz in the temperature range of 573–873 K. The measured electrical conductivity obeys the Arrhenius relation. Both the activation energy and pre-exponential factor for grain conductivity increase with increasing the CaO content; however, electrical conductivity of (Sm1−xCax)2Zr2O7−x decreases with increasing the CaO content, which is due to the increase in structural disordering at 0 ≤ x ≤ 0.025 and the presence of the poorly conducting CaZrO3 phase at 0.050 ≤ x ≤ 0.100, respectively.  相似文献   

11.
The effects of Ca and Zn substitution, respectively, for Y and Co in (Y1-xCax)BaCo4-yZnyO7 (0.25 ≤ x ≤ 0.75 and 1.0 ≤ y ≤ 1.75) on the structure, high-temperature phase stability, thermal expansion coefficient (TEC), and electrochemical performance for intermediate temperature solid oxide fuel cells (IT-SOFC) have been investigated. The (Y1-xCax)BaCo4-yZnyO7 oxides crystallize in a trigonal P31c symmetry similar to YBaCo4O7. The substitution of Zn for Co improves the long-term phase stability at high temperatures, but at the expense of the electrochemical performance. In contrast, the substitution of Ca for Y is improves electrochemical performances, but deteriorates the long-term phase stability at high temperatures at high Ca contents (x = 0.75 and 1.0). Among the various chemical compositions investigated in the (Y1-xCax)BaCo4-yZnyO7 system, the (Y0.5Ca0.5)BaCo2.5Zn1.5O7 composition offers a combination of good electrochemical performance and low TEC, while maintaining the phase stability at 600-800 °C for 120 h. The (Y0.5Ca0.5)BaCo2.5Zn1.5O7 + GDC (50 : 50 wt. %) composite cathodes exhibit a maximum power density of ∼ 450 mW cm−2 at 700 °C in anode-supported single SOFC.  相似文献   

12.
The phase structure and hydrogenation behavior of the (Sr1−xCax)2Al (x = 0.5, 0.6, 0.7, 0.8 and 0.9) alloys were investigated. It was found that the (Sr1−xCax)2Al alloys have different phase components with the change of Ca content. When x = 0.6 and 0.7, the single (Sr, Ca)2Al phase can be obtained. The lattice parameters of (Sr, Ca)2Al compound in the (Sr1−xCax)2Al alloys decrease gradually with the increase of Ca content. The (Sr, Ca)2Al phase can absorb hydrogen even at 303 K. During hydrogenation, the (Sr, Ca)2Al compound transforms into distinct phases at different temperatures.  相似文献   

13.
A two-dimensional sample array synthesis has been used to screen carbon-coated Li(1−x)Mgx/2FePO4 and LiFe(1−y)MgyPO4 powders as potential positive electrode materials in lithium ion batteries with respect to x, y and carbon content. The synthesis route, using sucrose as a carbon source as well as a viscosity-enhancing additive, allowed introduction of the Mg dopant from solution into the sol–gel pyrolysis precursor. High-throughput XRD and cyclic voltammetry confirmed the formation of the olivine phase and percolation of the electronic conduction path at sucrose to phosphate ratios between 0.15 and 0.20. Measurements of the charge passed per discharge cycle showed that the capacity deteriorated on increasing magnesium in Li(1−x)Mgx/2FePO4, but improved with increasing magnesium in LiFe(1−y) MgyPO4, especially at high scan rates. Rietveld-refined XRD results on samples of LiFe(1−y)MgyPO4 prepared by a solid-state route showed a single phase up to y = 0.1 according to progressive increases in unit cell volume with increases in y. Carbon-free samples of the same materials showed conductivity increases from 10−10 to 10−8 S cm−1 and a decrease of activation energy from 0.62 to 0.51 eV. Galvanostatic cycling showed near theoretical capacity for y = 0.1 compared with only 80% capacity for undoped material under the same conditions.  相似文献   

14.
The La(Ni3.8Al1.0Mn0.2)x (x = 0.94, 0.96, 0.98, 1.0) hydrogen storage alloys have been investigated to examine the effect of non-stoichiometry on the crystal structure, activation performance, hydrogen absorption/desorption properties and cycle life. It was found that for the stoichiometric compound, only single phase with CaCu5 type structure exists. However, for B-poor compounds of AB5 alloys, there is a principal CaCu5 type phase with a small amount of second phase and the amount of second phase increased with decreasing x when x ≥ 0.96 and reached a maximum when x = 0.96. The activation becomes harder with decreasing x until x = 0.96 and easier when x decreased to 0.94. The plateau pressure increased and the hydrogen uptake capacity decreased with decreasing x when x ≥ 0.96, and then decreased and increased, respectively, when x further decreased to 0.94. Both the change in the lattice strain which could be estimated by FWHM (full width at half maximum) and the degree of slope factor Sf in the alloys show the same trend with the change of x, exhibiting a maximum at x = 0.96. The ΔH decreased with decreasing x when x ≥ 0.96 and then increased when x = 0.94 and it was found that the larger the cell volume, the larger the absolute value of the enthalpy. The pulverization resistance of the alloys was greatly improved by the non-stoichiometric. The kinetics of the alloys was very fast and almost not influenced by the change of non-stoichiometric x. After 300 absorption/desorption cycles, the hydrogen uptake capacity of the stoichiometric and non-stoichiometric alloys almost kept the same, but the particle size decreased greatly.  相似文献   

15.
A novel series of samples Sn1−xGaxP2O7 (x = 0.00, 0.01, 0.03, 0.06, 0.09, 0.12, 0.15) are synthesized by solid state reaction. XRD patterns indicate that the samples of x = 0.00 − 0.09 exhibit a single cubic phase structure, and the doping limit of Ga3+ in Sn1−xGaxP2O7 is x = 0.09. The protonic and oxide-ionic conduction in Sn1−xGaxP2O7 are investigated using some electrochemical methods at intermediate temperatures (323-523 K). It is found that the samples exhibit appreciable protonic conduction in hydrogen atmosphere, and a mixed conduction of oxide-ion and electron hole in dry oxygen-containing atmosphere. The highest conductivities are observed for the sample of x = 0.09 to be 4.6 × 10−2 S cm−1 in wet H2 and 2.9 × 10−2 S cm−1 in dry air at 448 K, respectively. The H2/air fuel cell using x = 0.09 as electrolyte (thickness: 1.45 mm) generates a maximum power density of 19.2 mW cm−2 at 423 K and 22.1 mW cm−2 at 448 K, respectively.  相似文献   

16.
ReNi2.6−xMnxCo0.9 (x = 0.0, 0.225, 0.45, 0.675, 0.90) alloys were prepared by induction melting. The effects of partially substituting Mn for Ni on the phase structure and electrochemical properties of the alloys were investigated systematically. In the alloys, (La, Ce)2Ni7 phase with a Ce2Ni7-type structure, (Pr, Ce)Co3 phase with a PuNi3-type structure, and (La, Pr)Ni5 phase with a CaCu5-type structure were the main phases. The (La,Pr)Ni phase appeared when x increased to 0.45, and the (La, Pr)Ni5 phase disappeared with further increasing x (x > 0.45). The hydrogen-storage capacity of the ReNi2.6−xMnxCo0.9 (x = 0.0, 0.225, 0.45, 0.675, 0.90) alloys initially increased and reached a maximum when Mn content was x = 0.45, and then decreased with further increasing Mn content. The ReNi2.6−xMnxCo0.9 (x = 0.0, 0.225, 0.45, 0.675, 0.90) alloy exhibited a hydrogen-storage capacity of 0.81, 0.98, 1.04, 0.83 and 0.53 wt.%, respectively. Electrochemical studies showed that the maximum discharge capacity of the alloy electrodes initially increased from 205 mAh/g (x = 0.0) to 352 mAh/g (x = 0.45) and then decreased to 307 mAh/g (x = 90). The hydrogen absorption rate first increased and then decreased with addition of Mn element. The ReNi2.15Mn0.45Co0.9 alloy showed faster hydrogen absorption kinetics than that of the other alloys. The presence of Mn element slowed hydrogen desorption kinetics.  相似文献   

17.
A novel series of mixed ion conductors, Sn1−xScxP2O7 (x = 0.03, 0.06, 0.09, 0.12), were synthesized by a solid-state reaction method. The conduction behaviors of the ion conductors in wet hydrogen atmosphere were investigated by some electrochemical methods including AC impedance spectroscopy, gas concentration cells in the temperature range of 323-523 K. It was found that the doping limit of Sc3+ in SnP2O7 was between 9 mol% and 12 mol%. The highest conductivity was observed to be 2.76 × 10−2 S cm−1 for the sample of x = 0.06 under wet H2 atmosphere at 473 K. The ionic conduction was contributed mainly to proton and partially to oxide ion in wet hydrogen atmosphere from 373 K to 523 K. The H2/air fuel cells using Sn1−xScxP2O7 (x = 0.03, 0.06, 0.09) as electrolytes (1.7 mm in thickness) generated the maximum power densities of 11.16 mW cm−2 for x = 0.03, 25.02 mW cm−2 for x = 0.06 and 14.34 mW cm−2 for x = 0.09 at 423 K, respectively. The results indicated that Sn1−xScxP2O7 is a promising solid electrolyte system for intermediate temperature fuel cells.  相似文献   

18.
In order to search for cathode materials with better performance, Li3(V1−xMgx)2(PO4)3 (0, 0.04, 0.07, 0.10 and 0.13) is prepared via a carbothermal reduction (CTR) process with LiOH·H2O, V2O5, Mg(CH3COO)2·4H2O, NH4H2PO4, and sucrose as raw materials and investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM) and electrochemical impedance spectrum (EIS). XRD shows that Li3(V1−xMgx)2(PO4)3 (x = 0.04, 0.07, 0.10 and 0.13) has the same monoclinic structure as undoped Li3V2(PO4)3 while the particle size of Li3(V1−xMgx)2(PO4)3 is smaller than that of Li3V2(PO4)3 according to SEM images. EIS reveals that the charge transfer resistance of as-prepared materials is reduced and its reversibility is enhanced proved by the cyclic votammograms. The Mg2+-doped Li3V2(PO4)3 has a better high rate discharge performance. At a discharge rate of 20 C, the discharge capacity of Li3(V0.9Mg0.1)2(PO4)3 is 107 mAh g−1 and the capacity retention is 98% after 80 cycles. Li3(V0.9Mg0.1)2(PO4)3//graphite full cells (085580-type) have good discharge performance and the modified cathode material has very good compatibility with graphite.  相似文献   

19.
Quaternary alloys with the formula Ti1.5Zr5.5VxNi10−x (x between 0 and 3.0) were studied as a potential replacement for Laves phase alloys used as the negative electrode active material in nickel metal hydride batteries. The V-containing alloys all show multi-phase structures. The major phase shifts from a Zr7Ni10 structure to a Zr9Ni11 structure and finally to a C14 structure as the vanadium content increases. Other minor phases with C15 and ZrNi crystal structures are also present. The solubility of vanadium is high in AB2 phases (both C14 and C15), moderate for the ZrNi phase and very low for Zr7Ni10 and Zr9Ni11 phases. The bulk hydrogen transport property of the alloys is dominated by synergetic effects between major and minor phases. Electrochemical testing shows that the highest discharge capacity, 357 mAh/g, was obtained from an alloy with a chemical composition of Ti1.5Zr5.5V2.5Ni7.5 and mainly C14 structure. Testing also shows the high rate dischargeability is controlled by the surface reaction and Ti1.5Zr5.5V0.5Ni9.5 has the best high rate dischargeability.  相似文献   

20.
The present work demonstrates the reversible hydrogen storage properties of the ternary alloy Mg18In1Ni3, which is prepared by ball-milling Mg(In) solid solution with Ni powder. The two-step dehydriding mechanism of hydrogenated Mg18In1Ni3 is revealed, namely the decomposition of MgH2 is involved with different intermetallic compounds or Ni, which leads to the formation of Mg2Ni(In) solid solution or unknown ternary Mg–In–Ni alloy phase. As a result, the alloy Mg18In1Ni3 shows improved thermodynamics in comparison with pure Mg. The Ni addition also results in the kinetic improvement, and the minimum desorption temperature is reduced down to 503 K, which is a great decrease comparing with that for Mg–In binary alloy. The composition and microstructure of Mg–In–Ni ternary alloy could be further optimized for better hydrogen storage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号