首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels.  相似文献   

2.
A complete stand-alone electrolyser system has been constructed as a transportable unit for demonstration of a sustainable energy facility based on hydrogen and a renewable energy source. The stand-alone unit is designed to support a polymer electrolyte membrane (PEM) stack operating at up to ∼4 kW input power with a stack efficiency of about 80% based on HHV of hydrogen. It is self-pressurizing and intended for operation initially at a differential pressure of less than 6 bar across the membrane electrode assembly with the hydrogen generation side being at a higher pressure. With a slightly smaller stack, the system has been operated at an off-site facility where it was directly coupled to a 2.4 kW photovoltaic (PV) solar array. Because of its potential use in remote areas, the balance-of-plant operates entirely on 12 V DC power for all monitoring, control and safety requirements. It utilises a separate high-current supply as the main electrolyser input, typically 30–40 V at 100 A from a renewable source such as solar PV or wind. The system has multiple levels of built-in operator and stack safety redundancy. Control and safety systems monitor all flows, levels and temperatures of significance. All fault conditions are failsafe and are duplicated, triggering latching relays which shut the system down. Process indicators monitor several key variables and allow operating limits to be easily adjusted in response to experience of system performance gained in the field.  相似文献   

3.
This paper presents experimental results on the solar photovoltaic/PEM water electrolytes system performance in the Algerian Sahara regions. The first step is to present a photovoltaic module characterization under different conditions then validate the results by comparing the measured and calculated values. The main objective of this study is to develop a parametric study on the system performance (open-circuit voltage Voc, short circuit current Is, fill factor FF, maximum power Pm and the efficiency η) under hot climate conditions (Ouargla, Algeria). The ambient temperature effects and solar radiation on the solar PV performance characteristics were investigated using modeling and simulation analysis as well as experimental studies. The results show that the root mean squared error (RMSE) error of the currents and voltages and the mean bias error (MBE) are respectively 0.71%, 0.37% and 0.12%, 0.15%. The relative errors in the current and the voltage are respectively 0.83%–1.76%, and −0.58% to 0.83%. The second part provide some general characteristics concerning the indirect coupling of a lab scale proton exchange membrane (PEM) water electrolyser (HG60) powered by a set of our photovoltaic panels. Experimental results provide practical information for the modules and the electrolysis cells by the indirect coupling. The weather conditions effect on hydrogen production from the electrolyser was also investigated. The results showed a high hydrogen production of 284 L in one day for 08 h of running and the electrolyser power efficiency with solar PV system was between 18 and 40%.  相似文献   

4.
The current study develops a hydrogen map concept where renewable energy sources are considered for green hydrogen production and specifically investigates the solar energy-based hydrogen production potential in Turkey. For all cities in the country, the available onshore and offshore potentials for solar energy are considered for green hydrogen production. The vacant areas are calculated after deducting the occupied areas based on the available governmental data. Abundant solar energy as a key renewable energy source is exploited by photovoltaic cells. To obtain the hydrogen generation potential, monocrystalline and polycrystalline type solar cells are considered, and the generated renewable electricity is directed to electrolysers. For this purpose, alkaline, proton exchange membrane (PEM), and solid oxide electrolysers (SOEs) are considered to obtain the green hydrogen. The total hydrogen production potential for Turkey is estimated to be between 415.48 and 427.22 Million tons (Mt) depending on the type of electrolyser. The results show that Erzurum, Konya, Sivas, and Van are found to be the highest hydrogen production potentials. The main idea is to prepare hydrogen map in detail for each city in Turkey, based on the solar energy potential. This, in turn, can be considered in the context of the current policies of the local communities and policy-makers to supply the required energy of each country.  相似文献   

5.
An experimental model of a photovoltaic (PV) module-proton exchange membrane (PEM) electrolyser system has been built. A model has been developed for each device separately based on the experimental results. Output current–voltage (IV) characteristics of the PV module are modelled in respect to different irradiance and temperature conditions by experimental tests. Similarly, input IV characteristic and hydrogen formation characteristic of the PEM electrolyser are measured and modelled. After these studies, combined PV module–PEM electrolyser system model is defined. There is a good agreement between model predictions and measurements. At 18–100% irradiance interval, operating points of PEM electrolyser on the PV module are predicted with relative errors of 0.1–0.8%. Furthermore, the study shows that these simple model system devices can easily be defined in MATLAB/Simulink and used to model similar systems of different size.  相似文献   

6.
Needs for hydrogen, as a chemical feedstock, have been growing in the industry, more particularly in the petrochemical industry and in the floating glass technology. Moreover, by its versatility as an energy vector and its renewability, hydrogen has also become an attractive candidate as the vector energy of the future. This has resulted in large surge in demand for hydrogen. However, as hydrogen exists in nature mainly in combination with other elements, the development of its viable and sustainable production technologies has then become necessary.  相似文献   

7.
Zhe Li  Fergal Boyle  Anthony Reynolds 《Energy》2011,36(10):5865-5876
Renewable sources of energy are anticipated to play a major role in electricity generation in Ireland in the future. Currently, electricity is mainly generated from imported gas and coal due to a lack of indigenous fossil fuel resources in Ireland. Solar energy is omnipresent, freely available and environmental friendly. The utilisation of solar energy to produce electricity has become increasingly attractive worldwide. However, solar electricity generation has not been very popular in Ireland to-date either on a large scale or on a domestic scale. The unclear economics of domestic solar PV systems, under Irish conditions, is considered the biggest obstacle for expanding domestic solar PV system installation in Ireland. This paper presents a methodology to accurately evaluate the economic viability of a domestic solar PV system on a case-by-case basis. The methodology utilises the software programmes HOMER and Microsoft Excel 2007 for the energy and economic analyses. Utilising this methodology, a realistic economic analysis of eight sample domestic solar PV systems available in Ireland is presented. Based on the predictions, the domestic solar PV system is not economically viable under current conditions in Ireland. Domestic solar PV systems still do not look promising even if better financial support is given.  相似文献   

8.
A comparison is made between the ambient and conventional temperature alkaline electrolysers in terms of operational system, voltage efficiency and corrosion rates. The capital, operational and maintenance costs are reduced by reducing auxiliary equipment as well as auxiliary utilities in the ambient temperature alkaline electrolyser. Also, since auxiliary electricity consumption is reduced, the alkaline electrolyser is capable for dynamic, continuous and fast-response operation with renewable energy sources. The ambient temperature alkaline electrolyser is capable for wider operational range and faster response time when powered by wind energy sources. Although the voltage efficiency for hydrogen production is increased by about 12% at the conventional operating temperature, corrosion rate of the electrode is increased by a factor of about 6.3. The voltage efficiency for hydrogen production, however, is increased by about 12% by employing electrocatalyst in the ambient temperature alkaline electrolyser, and there is benefit of enhancing lifetime durability of the electrode as well as cell components at relatively lower operating temperature.  相似文献   

9.
In this study, we comprehensively analyze the probability distribution of the hydrogen production for PV assisted PEM electrolyser system. A case study is conducted using the experimental data taken from a recently installed system in Balikesir University, Turkey. A novel computational tool is developed in Matlab-Simulink for analyzing the data. The concept of probability density frequency is successfully applied in the analyses of the wind speed and the solar energy in literature. This study presents a method of applying this knowledge to solar energy assisted hydrogen production. The change in the probability distribution of the hydrogen production with the solar irradiation throughout a year is studied and illustrated. It is found that the maximum amount of hydrogen production occurs at between 600 and 650 W/m2 of solar radiation. Annual hydrogen production is determined as 2.97 kg for per m2 of PV system. Average hydrogen production efficiency of the studied PEM electrolyser is found to be 60.5% with 0.48 A/cm2 of current density. The presented results of this study are expected to be valuable for the researchers working on renewable hydrogen production systems.  相似文献   

10.
In renewably powered remote hydrogen generation systems, on-site water production is essential so as to service electrolysis in hydrogen systems which may not have recourse to shipments of de-ionised water. Whilst the inclusion of small Reverse Osmosis (RO) units may function as a (useful) dump load, it also directly impacts the power management of remote hydrogen generation systems affecting operational characteristics.  相似文献   

11.
Photovoltaics and electrolyser coupling is one of the most promising options for obtaining hydrogen from a renewable energy source. Both are well known technologies and direct coupling is possible; however, due to high variability of the solar radiation, an efficient relative sizing still presents some challenges. In fact, relative sizing is always a key issue when coupling renewable electric sources to water electrolysers. Few previous works addressed the relative sizing and an easy and efficient method is still missing. This work presents a new method for relative sizing between both components based on simple modelling of both polarisation curves. Modelling and simulation is used for extracting a cloud of maximum power points at all the radiation and temperature conditions for a normalised PV generator. Then, the ideal ratio between the size of components is obtained by fitting a normalised polarisation curve for the electrolyser to this cloud of maximum power points. PV generator and PEM electrolyser models are proposed and the method is applied, as example, to two different PEM water electrolysers. The method helps the relative sizing issue for designing solar hydrogen production systems based on water electrolysis, because it is derived from manufacturer parameters and the used of uncomplicated numerical methods.  相似文献   

12.
This paper describes a photovoltaic power regulator aimed for photovoltaic stand-alone hydrogen-backup power systems. The main characteristics of the regulator are the following; it employs a modular approach where each power cell has three ports, one input and two outputs, the input port is connected to a photovoltaic source while the two output ports are connected to a battery and to an electrolyser, respectively. A second characteristic is that the proposed regulator is driven sequentially, minimising the regulator losses. The operation and features of the photovoltaic regulator are presented and analyzed. Design guidelines are suggested and experimental validation is also given for a 2 kW prototype.  相似文献   

13.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

14.
A proposed hybrid solar hydrogen system with activated carbon storage for residential power generation is assessed using exergy analysis. Energy and exergy balances are applied to determine exergy flows and efficiencies for individual devices and the overall system. A ‘base case’ analysis considers the proposed system without modification, while a ‘modified case’ extends the base case by considering the possibility of multiple product outputs. It is determined that solar photovoltaic-based sub-systems have the lowest exergy efficiencies (14-18%) and offer the most potential for improvement. A comparison of these two scenarios shows that the additional outputs raise the exergy efficiency of the modified case (11%) relative to the base case (4.0%). An investigation of the energy and exergy efficiencies of separate devices illustrates how energy analyses can be misleading. The hybrid system is expected to have several environmental benefits, which may offset to some degree economic barriers to implementation.  相似文献   

15.
The approach of using hydrogen for an energy store to offset seasonal variations in solar energy is one very much at the periphery of current renewable energy system design. Nonetheless, its inherent advantages for long term storage in stand alone power systems warrant further detailed investigation. This paper provides a comparative overview of the very disparate technologies within two generic approaches to achieving this goal. These are: photovoltaic (PV) powered electrolysis of water and direct photoelectrolytic (PE) generation of hydrogen from water. Comparison of these is difficult, however, the paper compares devices of similar material system and structure within each generic scheme. PV/electrolysis is the more mature technology but there is still a wide range of potential ‘solar to hydrogen’ efficiencies. A figure of about 9% is estimated for comparison, with justification given. The comparative figure for PE is more difficult to judge because of even more disparate approaches to specific problems of sufficient photovoltage and stability, but an approximate comparative figure of 5% is estimated. Thus making PV/electrolysis more appropriate at present. Nonetheless, inherent advantages of simplicity of system design and potential robustness mean that PE may become more appropriate as the technology develops.  相似文献   

16.
Palladium (Pd) on activated carbon is used as electrocatalyst coated on Nafion 115 membrane as Hydrogen electrode and RuO2 is coated on other side of membrane used as oxygen electrode. 5 wt% and 10 wt% Pd on activated carbon is prepared as membrane electrode assembly (MEA) and investigated the performance of the same using inhouse prepared 10 cm2 single cell. The performance of the single cell assembly and the hydrogen yield are reported during electrolysis operation at temperatures 27 °C, 45 °C and 65 °C at 0.1, 0.2, 0.3, 0.4, 0.5 A/cm2 current densities with respect to voltages.  相似文献   

17.
Solar hydrogen production by coupling of pressurized high temperature electrolyser with concentrated solar tower technology is studied. As the high temperature electrolyser requires constant temperature conditions, the focus is made on a molten salt solar tower due to its high storage capacity. A flowsheet was developed and simulations were carried out with Aspen Plus 8.4 software for MW-scale hydrogen production plants. The solar part was laid out with HFLCAL software. Two different scenarios were considered: the first concerns the production of 400 kg/d hydrogen corresponding to mobility use (fuel station). The second scenario deals with the production of 4000 kg/d hydrogen for industrial use. The process was analyzed from a thermodynamic point of view by calculating the overall process efficiency and determining the annual production. It was assumed that a fixed hydrogen demand exists in the two cases and it was assessed to which extent this can be supplied by the solar high temperature electrolysis process including thermal storage as well as hydrogen storage. For time periods with a potential over supply of hydrogen, it was considered that the excess energy is sold as electricity to the grid. For time periods where the hydrogen demand cannot be fully supplied, electricity consumption from the grid was considered. It was assessed which solar multiple is appropriate to achieve low consumption of grid electricity and low excess energy. It is shown that the consumption of grid electricity is reduced for increasing solar multiple but the efficiency is also reduced. At a solar multiple of 3.0 an annual solar-to-H2 efficiency greater than 14% is achieved at grid electricity production below 5% for the industrial case (4000 kg/d). In a sensitivity study the paramount importance of electrolyser performance, i.e. efficiency and conversion, is shown.  相似文献   

18.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

19.
Performance evaluation of solar PV/T system: An experimental validation   总被引:8,自引:2,他引:6  
In this communication, an attempt has been made to develop a thermal model of an integrated photovoltaic and thermal solar (IPVTS) system developed by previous researchers. Based on energy balance of each component of IPVTS system, an analytical expression for the temperature of PV module and the water have been derived. Numerical computations have been carried out for climatic data and design parameters of an experimental IPVTS system. The simulations predict a daily thermal efficiency of around 58%, which is very close to the experimental value (61.3%) obtained by Huang et al.  相似文献   

20.
In the present paper, a new energy generation system is suggested for multiple outputs, including a hydrogen generation unit. The plant is powered by a solar tower and involves six different subsystems; supercritical carbon dioxide (sCO2) re-compression Brayton cycle, ammonia-water absorption refrigeration cycle, hydrogen generation, steam generation, drying process, and thermoelectric generator. The thermodynamic assessment of the multi-generation system is carried out for three different cities from Turkey, Iran, and Qatar. The energy and exergy efficiencies are calculated for base conditions to compare the different locations. The operating output parameters for the suggested system and simple re-compression Brayton system are compared. A parametric analysis is also done for investigating the influences of different system variables on plant performance. According to the results, Doha city is found to be more effective due to its geographical conditions. Moreover, based on the comparative study, the proposed cycles produce more power than the basic re-compression cycle with 64.59 kW, 47.33 kW, and 52.25 kW for Doha, Isparta, and Tehran, respectively. Additionally, the analyses revealed that in the term of energy efficiency, the suggested system has 32.29%, 32.28%, and 32.29% better performance than the simple cycle, and in terms of exergy efficiency, it has 4%, 4.8%, and 5% better performance than the simple cycle in Doha, Isparta, and Tehran, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号