首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
电极材料在钒电池发展及应用中起到了至关重要的作用,对于钒电池电极的研究既包括不同基体电极材料的筛选,制备,也包括电极材料的结构优化,表面改性及模拟等.本文首先简要介绍了钒电池用电极材料的分类及其相关代表性结果,明确了电极材料的发展方向,其中具有耐腐蚀性,高电导率,高比表面积,高活性及价格低廉的电极材料成为研究的重点.随后以最具有实用价值的炭素电极材料为中心,详细介绍了该类材料的研究进展以及当前研究过程中存在的问题及可能的解决途径.最后,对电极材料的下一步研究工作进行了展望,认为不仅在电极材料产业化方面需要有进一步的突破,在与电极相关的基础研究如电极过程动力学等方面也需要有更为深入的探讨.  相似文献   

2.
Biomass is one of the most promising clean energy sources. The porous carbon materials prepared by biomass as electrode materials of electric double-layer capacitors (EDLCs) are easily available at a low price, which would greatly reduce the cost of the production. However, carbon materials made with biomass generally have many disadvantages such as low specific surface area (SSA), poor pore size structure, and difficulty to control the pore diameter, which results in the poor EDLC performance. In this paper, the prime purpose is to expose the recent progress of biomass carbon in the fields of electrode materials of EDLC. The review provides a comprehensive literature review that is focused on EDLC electrodes derived from biochar of the evidence of 181 publications published over a period of 30 years from 1989 to 2019. Various carbon materials derived from different biomass for electrode of EDLC are discussed. The most promising methods for the preparation of several biomass carbons are described in detail. Some factors such as SSA, pore size structure, surface functional groups, and electrolyte are further analyzed to discuss the effects on the electrochemical performance of the EDLC. Notably, current deficiencies and possible solutions of preparation methods of biomass carbon as electrode materials are outlined. And the future research trends in this field are prospected.  相似文献   

3.
钠(钾)离子电池资源丰富、成本低廉,是极具大规模应用潜力的新型电池体系。然而,受制于较大的钠(钾)离子半径,这两类电池电极材料的选择受到了极大的限制。以共轭羰基化合物为代表的有机电极材料具有柔性的骨架结构,对阳离子半径选择性小,且结构多样、理论比容量高、环境友好,基于有机共轭羰基化合物构建的钠(钾)离子电池是未来“绿色电池”发展的重要方向。本文介绍了共轭羰基化合物的分类、储钠/钾性能及机理,重点探讨了羰基化合物作为储钠(钾)材料存在的问题和改进方法。最后,总结了羰基化合物作为钠钾离子电池电极材料存在的基础科学问题、技术挑战以及竞争力,同时进一步展望了有机共轭羰基化合物的发展方向以及大规模储能领域的应用前景。  相似文献   

4.
Solid oxide fuel cells (SOFCs) are the most efficient devices for the direct conversion of the chemical energy stored in fuels such as hydrogen and hydrocarbons into electricity. The development of highly efficient and robust SOFCs requires cathodes and anodes with high electrocatalytic activity for O2 reduction and direct oxidation of hydrocarbon fuels, respectively. Nanoscale engineering of electrode structures via metal salt solution impregnation or infiltration attracts increasing attention as the most effective way to develop highly active and advanced electrode structures for SOFCs. The infiltration method opens a new horizon in the advanced electrode development as the method expands the set of variable electrode materials combinations with the elimination of thermal expansion mismatch and the suppression of potential detrimental reactions between electrode and electrolyte materials. In this article, the advances and challenges in the development of nanoscale and nano-structured electrodes and the fundamental understanding of the remarkable enhancement in the electrode performance are reviewed and discussed with primary focus on the progress and status of the field in the last 5 years.  相似文献   

5.
Sustainable and renewable energy resources, as well as energy storage systems (ESSs), are amongst the current and critical global requirements. A comparative discussion on batteries, fuel cells and electrochemical capacitors (ECs) is presented. The mechanisms involved in various classes of ECs are also elaborated. Additionally, a historical background highlighting some of the major steps associated with EC development over the years is discussed in this review. In particular, carbon nanostructured materials have high potential in the development of ESSs, and hence this review presents an insight on the current ESSs with a strong bias towards these materials as ECs. The current status of carbon nanomaterials, such as carbon nanotubes, nanofibers, nano‐onions, nanorods, fullerenes and graphene nanosheets, in ECs is reviewed. The associated effects of nanostructural parameters, such as pore sizes and specific electro‐active areas, amongst others, in terms of energy storage capabilities are also discussed. Typical physicochemical characterisation techniques, which enrich understanding of their characteristics, are also reviewed. The discussion views set platforms for a variety of unique carbon nanomaterial designs with high prospective specific capacitance. Key porosity tailoring protocols, such as chemical activation, introduction of heteroatoms in carbon nanostructures and template synthesis methods, are also reviewed. The effects of other device components, such as electrolyte ion size and solvent system, electrode design and use of binders, to the overall capability of EC, are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Among different electric energy storage technologies electrochemical capacitors are used for energy storage applications when high power delivery or uptake is needed. Their energy and power densities, durability and efficiency are influenced by electrode and electrolyte materials however due to a high cost/performance ratio; their widespread use in energy storage systems has not been attained yet.Thanks to their properties such as high surface area, controllable pore size, low electrical resistance, good polarizability and inertness; activated carbons derived from polymeric precursors are the most used electrode materials in electrochemical capacitors at present. Other electrode materials such as shaped nano-carbons or metal oxides are also investigated as electrode materials in electrochemical capacitors, but only as useful research tools.Most commercially used electrochemical capacitors employ organic electrolytes when offering concomitant high energy and high power densities. The use of aqueous based electrolytes in electrochemical capacitor applications is mainly limited to research purposes as a result of their narrow operating voltage. Recent studies on room temperature ionic liquids to be employed as electrolyte for electrochemical capacitor applications are focused on fine tuning their physical and transport properties in order to bring the energy density of the device closer to that of batteries without compromising the power densities.In this paper a performance analysis, recent progress and the direction of future developments of various types of materials used in the fabrication of electrodes for electrochemical capacitors are presented. The influence of different types of electrolytes on the performance of electrochemical capacitors such as their output voltage and energy/power densities is also discussed.  相似文献   

7.
全钒液流电池用电极及双极板研究进展   总被引:3,自引:0,他引:3  
全钒氧化还原液流储能电池是一种新型的储能装置,电极及双极板是其关键材料。介绍了全钒液流储能电池的两种电极(金属电极、碳素电极)和三种双极板(金属双极板、碳塑双极板和石墨双极板)以及一体化电极双极板的研究进展。  相似文献   

8.
静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。  相似文献   

9.
In the past decades, nickel and cobalt oxide/hydroxide materials have been investigated intensively for supercapacitor applications. Some works report very high specific capacitance values, up to 3152 F g−1, for these materials. By contrast, some other works report quite modest capacitance values, up to 380 F g−1 for the same materials prepared using same strategy. It is found that most works reporting very high capacitance value applied nickel foam as current collector. In this paper, surface chemistry and electrochemical properties of nickel foam are investigated by XPS analysis, cyclic voltammetry and galvanostatic charge-discharge measurement. The results show that using nickel foam as current collector can bring about substantial errors to the specific capacitance values of electrode materials, especially when small amount of electrode active material is used in the measurement. It is suggested that an electrochemically inert current collector such as Ti or Pt film should be used for testing electrochemical properties of nickel and cobalt oxide/hydroxide positive electrode materials.  相似文献   

10.
There is an enormous driving force in solid oxide fuel cells (SOFCs) to reduce the operating temperatures from high temperatures (800–1000 °C) to intermediate and low temperatures (400–800 °C) in order to increase the durability, improve thermal compatibility and thermal cycle capability, and reduce the fabrication and materials costs. One of the grand challenges is the development of cathode materials for intermediate and low temperature SOFCs with high activity and stability for the O2 reduction reaction (ORR), high structural stability as well as high tolerance toward contaminants like chromium, sulfur and boron. Lanthanum strontium cobalt ferrite (LSCF) perovskite is the most popular and representative mixed ionic and electronic conducting (MIEC) electrode material for SOFCs. LSCF-based materials are characterized by high MIEC properties, good structural stability and high electrochemical activity for ORR, and have played a unique role in the development of SOFCs technologies. However, there appears no comprehensive review on the development and understanding of this most important MIEC electrode material in SOFCs despite its unique position in SOFCs. The objective of this article is to provide a critical and comprehensive review in the structure and defect chemistry, the electrical and ionic conductivity, and relationship between the performance, intrinsic and extrinsic factors of LSCF-based electrode materials in SOFCs. The challenges, strategies and prospect of LSCF-based electrodes for intermediate and low temperature SOFCs are discussed. Finally, the development of LSCF-based electrodes for metal-supported SOFCs and solid oxide electrolysis cells (SOECs) is also briefly reviewed.  相似文献   

11.
Electrochemical energy technologies such as fuel cells, supercapacitors, and batteries are some of the most suitable energy storage and conversion devices to meet our needs proving the future generation’s equitable opportunity to meet their own needs. For this purpose, an earth-abundant precursor such as biomass is the best candidate for the synthesis of the next generation of low-cost and green electrode materials. This review summarizes the most recent progress in biomass-derived carbons for use in fuel cells, supercapacitors and lithium-ion batteries, the physical-chemical properties, desired features, performances, and limitations for electrochemical energy technologies. Several thermochemical treatments such as chemical activation, template methods, doping and hydrothermal treatments have been reviewed. Finally, we provide the reader with comprehensive information of the challenges, future research efforts, advantages, limitations and opportunities which will be a fundamental insight for the future design of biomass-derived carbon electrode materials for electrochemical storage and conversion systems.  相似文献   

12.
锂离子电池由于具有高能量密度、高循环寿命、安全等诸多优点,是现代生活中最受欢迎的便携式电源,有着广阔的应用前景。为了充分发挥锂离子电池的潜力,推进其实用化进程,需要深入研究电极反应历程。作为锂离子电池研究的得力助手,原子力显微镜(AFM)能通过其针尖原子与电极表面原子之间的相互作用,实时检测电极表面的微观形貌,在纳米尺度上提供电极表面的物理化学信息,为电极材料和电解液的优化改性提供实验依据。本文综述了AFM在锂离子电池研究中的最新应用进展,包括电化学反应条件下电极材料的形貌变化、纳米力学性能和电学性能等,说明AFM将会进一步推动锂离子电池的研究进展。  相似文献   

13.
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study, four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature, fuel humidification, and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes, significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.  相似文献   

14.
The structures and properties of high capacity conversion electrodes are key factors as these undergo successive lithium insertion and conversion during an electrochemical process in the rechargeable lithium-ion batteries. The invention of alloying, conversion and displacement reactions seem to be crucial for reversible intercalation/de-intercalation of more than one Li during the metal redox oxidation state to achieve the high capacity with the electrode of modern lithium-ion batteries. Therefore, the exploration of new electrode materials is necessary based on the conversion or displacement concept and their potential applications. In addition, most of the electrode materials were selected on the basis of not only capacity, voltage and volume change of bulk, but it is also important to consider point defects, surface and interface properties, nano-size effects and metal-mixtures theoretically to meet their requirements of practical applications. In this review, we overview the development of recent conversion electrodes for their better performance experimentally and theoretically with key issues, challenges and future directions in this rapidly developing field.  相似文献   

15.
Li-ion batteries made by the Lithylene technology were investigated after extensive cycling for a mechanistic understanding of the capacity fade phenomena. The batteries cycled 500 times at 0.5 C were found to lose 13% of their original capacity, which was solely due to the loss of active materials. The negative electrode maintained its capacity to contain Li+ ions from the positive electrode. The loss of positive electrode materials was attributed to formation and thickening of the surface layer and structure disorder evidenced by XRD measurements. In situ impedance measurements revealed that the positive electrode was also responsible for the impedance rise upon cycling. The charge transfer resistance was found to be the most influential factor in the battery impedance, which increased exponentially during cycling. This increase was proved not due to the decrease of positive electrode surface area but resulted from growth of the surface layer.  相似文献   

16.
水系锂离子电池是以水溶液为电解质的二次电池,它克服了传统有机体系电池电解液昂贵,有毒,易燃,离子电导率低,制作成本高等缺点,成为继风能,太阳能后最具发展潜力的绿色能源之一.本文归纳了近年来国内外水系锂离子电池正负极材料的研究进展,介绍了各种电极材料存在的主要问题(如电极材料在电解液中的溶解,电解液中质子活性大导致电极材料发生副反应等)以及改性方法,并提出对电极材料进行修饰是水系锂离子电池未来的发展趋势.  相似文献   

17.
Superior electrode materials play a key role on the electrochemical performance for the lithium-ion batteries and supercapacitors. The Co3O4-based materials are promising electrode materials due to their high specific capacity and energy density. However, the poor cycle performance limits their applications during the process of the commercialization for the lithium-ion batteries and supercapacitors. Because of the poor cycle stability, C, N co-doped Co3O4 hollow spheres are successfully prepared and used as electrode materials for the lithium-ion batteries and supercapacitors. Via the C, N co-doping process, the electronic conductivity is greatly improved. Moreover, the hollow structure could ensure the structural stability during the electrochemical process. As a result, the cycle performance and specific capacity are greatly improved when the C, N co-doped Co3O4 composites are used as electrode materials for the lithium-ion batteries and supercapacitors.  相似文献   

18.
Transition metal oxides are nowadays one of the most important materials in the manufacture of capacitive electrodes. The most important problems with these materials for applied energy storage devices are low specific energy and poor electrical conductivity. In this research nickel ferrite nanoparticles (NiFe2O4) and also hybrid of NiFe2O4/rGO are synthesized by hydrothermal method and characterized by XRD, Raman, and XPS analysis. The amount of porosity and specific surface area is studied by BET analysis as and surface morphology is studied by SEM and TEM. To investigate the effect of adding rGO to NiFe2O4 nanoparticles, from a hybrid electrode superconducting electrochemical tests are performed, including CV, EIS, and charge-discharge. This electrode with a capacitance of 584.63 F/g and capacitance retention of 91% after 2000 consecutive cycles can be a tempting option for supercapacitor applications.  相似文献   

19.
The research on electrode materials for supercapacitor application continues to evolve as the request of high‐energy storage system has increased globally due to the demand for energy consumption. Over the past decades, various types of carbon‐based materials have been employed as electrode materials for high‐performance supercapacitor application. Among them, graphene is 1 of the most widely used carbon‐based materials due to its excellent properties including high surface area and excellent conductivity. To exploit more of its interesting properties, graphene is tailored to produce graphene oxide and reduced graphene oxide to improve the dispersibility in water and easy to be incorporated with other materials to form binary composites or even ternary composites. Nowadays, ternary composites have attracted enormous interest as 2 materials (binary composites) cannot satisfy the requirement of the high‐performance supercapacitor. Thus, many approaches have been employed to fabricate ternary composites by combining 3 different types of electroactive materials for high‐performance supercapacitor application. This review focuses on the supercapacitive performance of graphene‐based ternary composites with different types of active materials, ie, conducting polymers, metal oxide, and other carbon‐based materials.  相似文献   

20.
锂离子电池商业化应用已有30多年,但目前的电池性能仍不能满足社会发展的需求。为此,须不断开发高性能的电池材料。电化学测量是电池材料开发不可或缺的关键技术。锂金属电极是锂离子电池电化学测量中最常用的参比电极,其电位稳定性将影响电化学测量结果的准确性。报道一种能提高锂金属参比电极电位稳定性的锂金属表面处理方法。将有机锌盐和氟代碳酸酯的混合溶液滴加在锂金属表面,通过锂金属与溶液组分的反应,在锂金属表面形成一层含锌锂合金和氟化锂的混合界面膜,可降低锂溶解/沉积过电位。处理得到的锂金属电极在Li//Li对称电池中用1 mA/cm2的电流及1 mA·h/cm2的容量恒电流连续充放电,该对称电池的电压稳定时间是未处理电池的2倍以上。这种锂金属电极表面处理方法可提高电极材料电化学性能测量的稳定性,有利于锂离子电池新材料的开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号