首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous catalyst alloy powders in form of Co–P, Co–B, and Co–P–B have been synthesized by chemical reduction of cobalt salt at room temperature for catalytic hydrolysis of NaBH4. Co–P–B amorphous powder showed higher efficiency as a catalyst for hydrogen production as compared to Co–B and Co–P. The enhanced activity obtained with Co–P–B (B/P molar ratio = 2.5) powder catalyst can be attributed to: large active surface area, amorphous short range structure, and synergic effects caused by B and P atoms in the catalyst. The roles of metalloids (B and P) in Co–P–B catalyst have been investigated by regulating the B/P molar ratio in the starting material. Heat-treatment at 773 K in Ar atmosphere causes the decrease in hydrogen generation rate due to partial Co crystallization in Co–P–B powder. Kinetic studies on the hydrolysis reaction of NaBH4 with Co–P–B catalyst reveal that the concentrations of both NaOH and catalyst have positive effects on hydrogen generation rate. Zero order reaction kinetics is observed with respect to NaBH4 concentration with high hydride/catalyst molar ratio while first order reaction kinetics is observed at low hydride/catalyst molar ratio. Synergetic effects of B and P atoms in Co–P–B catalyst lowers the activation energy (32 kJ mol−1) for hydrolysis of NaBH4. The stability, reusability, and durability of Co–P–B catalyst have also been investigated and reported in this work. It has been found that by using B/P molar ratio of 2.5 in Co–P–B catalyst, highest H2 generation rate of about ∼4000 ml min−1 g−1 can be achieved. This can generate 720 W for Proton Exchange Membrane Fuel Cells (0.7 V): which is necessary for portable devices.  相似文献   

2.
Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 °C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160–200 °C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power (including efficiency) as well as alanate kinetics were varied by system modelling with gPROMS®. The kinetics of the hydride decomposition was found to have a major influence on the performance of the system. A cumulative output of 0.8 kWh was reached in a test run.  相似文献   

3.
Use of hydrogen as a temporary alloying element in titanium alloys is an attractive approach for enhancing processability, and also for controlling the microstructure and improving final mechanical properties. In this study, the α + β titanium alloy, Ti–6Al–4V, was hydrogenated with hydrogen levels of 0.1, 0.3 and 0.5 wt%. The microstructure, phases and phase transformations were investigated by optical microscopy, X-ray diffraction and transmission electron microscopy. The results showed that the hydrogen addition had a noticeable influence on the microstructure of Ti–6Al–4V alloy. Hydrogen stabled the β-phase and leaded to the formation of hexagonal close packed α′ martensite as well as face-centered cubic δ hydride. Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti–6Al–4V alloy was revealed.  相似文献   

4.
Mechanical alloying has been carried out to synthesize a hydrogen storage alloy by milling titanium hydride and nickel. The structure and electrochemical properties such as discharge capacity, charge-transfer, and hydrogen diffusion of the milled powders were investigated. The results of X-ray diffraction showed that an amorphous phase was formed after ball milling. The electrode potentials of the milled powders were −0.989, −0.878 and −0.941 V (vs. Hg/HgO) in the electrolyte of 6 M KOH when the milling periods were 20, 40, and 60 h, respectively. The Ti–Ni–H powders milled for 60 h had a maximum discharge capacity of 102.2 mAh/g at a discharge current density of 60 mA/g. The results of the linear polarization showed that the exchange current density decreased as the hydrogen concentration within the powders decreased. The electrochemical impedance spectroscopy (EIS) demonstrated the same consequence and presented that the hydrogen diffusion decreased by decreasing the hydrogen concentration.  相似文献   

5.
Catalysts with high nickel concentrations 75%Ni–12%Cu/Al2O3, 70%Ni–10%Cu–10%Fe/Al2O3 were prepared by mechanochemical activation and their catalytic properties were studied in methane decomposition. It was shown that modification of the 75%Ni–12%Cu/Al2O3 catalyst with iron made it possible to increase optimal operating temperatures to 700–750 °C while maintaining excellent catalyst stability. The formation of finely dispersed Ni–Cu–Fe alloy particles makes the catalysts stable and capable of operating at 700–750 °C in methane decomposition to hydrogen and carbon nanofibers. The yield of carbon nanofibers on the modified 70%Ni–10%Cu–10%Fe/Al2O3 catalyst at 700–750 °C was 150–160 g/g. The developed hydrogen production method is also efficient when natural gas is used as the feedstock. An installation with a rotating reactor was developed for production of hydrogen and carbon nanofibers from natural gas. It was shown that the 70%Ni–10%Cu–10%Fe/Al2O3 catalyst could operate in this installation for a prolonged period of time. The hydrogen concentration at the reactor outlet exceeded 70 mol%.  相似文献   

6.
The aim of the present work is to study the catalytic efficiency of amorphous Co–Ni–P–B catalyst powders in hydrogen generation by hydrolysis of alkaline sodium borohydride (NaBH4). These catalyst powders have been synthesized by chemical reduction of cobalt and nickel salt at room temperature. The Co–Ni–P–B amorphous powder showed the highest hydrogen generation rate as compared to Co–B, Co–Ni–B, and Co–P–B catalyst powders. To understand the enhanced efficiency, the role of each chemical element in Co–Ni–P–B catalyst has been investigated by varying the B/P and Co/Ni molar ratio in the analyzed powders. The highest activity of the Co–Ni–P–B powder catalyst is mostly attributed to synergic effects caused by each chemical element in the catalyst when mixed in well defined proportion (molar ratio of B/P = 2.5 and of Co/(Co + Ni) = 0.85). Heat-treatment at 573 K in Ar atmosphere causes a decrease in hydrogen generation rate that we attributed to partial Co crystallization in the Co–Ni–P–B powder. The synergic effects previously observed with Co–Ni–B and Co–P–B, now act in a combined form in Co–Ni–P–B catalyst powder to lower the activation energy (29 kJ mol−1) for hydrolysis of NaBH4.  相似文献   

7.
Carbonaceous material, if it is to compete with metallic hydride alloys as a hydrogen storage electrode in a reversible chemical power source, should demonstrate 2 key qualities. Firstly, it should exhibit a high hydrogen elecrosorption. Secondly, it should co-operate efficiently with the cathode under particular charging and discharge conditions. Based on this assumption, an investigation into the influence of charging conditions on storage efficiency of a lignin based active carbon electrode with high hydrogen storage capacity was undertaken. Current densities of up to 32 A/g and charging times ranging from 196 seconds to 48 h were used. The results show that it is possible to charge the electrode rapidly even for tens of seconds using adequately high current density. However, full exploitation of charge storage capability of the carbon material (585 mA h/g in the tested material [the equivalent of storing 2.17 wt% in gas hydrogen]), required significant overcharge and, therefore, was only possible at a very low coulombic efficiency – below 2%. The acceptable coulombic efficiency of the charge/discharging process – 60%, could only be reached provided that less than 50% of the maximum material sorption capacity was utilized.  相似文献   

8.
Hydrogen storage properties of Mg–50 vol.%V7.4Zr7.4Ti7.4Ni composite prepared by spark plasma sintering were investigated based on the PCT measurements, kinetics and DSC estimations and microstructure observations. The results showed that the composite consisted of Mg phase and V-based solid solution, with a small amount of sintering phase at their interface, and could absorb and desorb hydrogen at 303 K and 573 K, with a maximum hydrogen storage capacity of 3.05 wt.% and 2.55 wt.%, respectively. At 573 K it was found that the Mg phase was the basis for the hydrogen absorption/desorption, but with the combination of the V-based solid solution its kinetics was greatly improved, and its hydrogen desorption temperature decreased by about 117 K, which made it possible for hydrogen desorption of Mg phase at 573 K. Meanwhile the sintering phase was considered to be a key factor in improving hydriding properties of the Mg phase, which might act as a catalyst and offer preferable paths for hydrogen diffusion from V-based solid solution to the Mg phase.  相似文献   

9.
Amorphous Co–W–P catalysts were prepared on Cu substrates by electrodeposition, which have been investigated as the catalyst for hydrogen generation from alkaline NaBH4 solution. The surface morphology and chemical composition of the as-prepared Co–W–P catalysts were analyzed in relation to the cathodic current density and the electrodeposition time. The hydrogen generation rate for the optimized Co–W–P catalyst is measured to be 5000 mL (min g-catalyst)−1 at 30 °C. From hydrogen generation tests in solutions with the various concentrations of NaBH4 and NaOH, there were optimum concentrations for both NaBH4 and NaOH, above or below which the hydrogen generation rate decreased. Furthermore, the as-prepared catalyst also showed good cycling capability and the activation energy for hydrolysis of NaBH4 by the Co–W–P catalyst was calculated to be 22.8 kJ/mol, which was lower than other reported Co-based catalysts.  相似文献   

10.
Gasification and partial oxidation of 0.25 molar glucose solution was conducted over different metallic nickel (Ni) loadings (7.5, 11, and 18 wt%) on different catalyst supports (θ-Al2O3 and γ-Al2O3) in supercritical water. Experiments were carried out at three different temperatures (T) of 400, 450, and 500 °C at constant pressure of 28 MPa and a 30 min reaction time (t). For comparison, some experiments were conducted using high loading commercial catalyst (65 wt% Ni on Silica–alumina). Hydrogen peroxide (H2O2) was used as a source of oxygen in the partial oxidation experiments. Oxygen to carbon molar ratios (MR) of 0.5–0.9 were examined to increase the hydrogen production via carbon monoxide (CO) production. Results showed that in the absence of the catalyst, the optimum molar ratio was 0.8 i.e. 80% of the amount of oxygen required for complete oxidation of glucose. At a molar ratio of 0.8, the hydrogen yield was 0.3 mol/mol, as compared to 0.2 mol/mol glucose at molar ratio of 0.5 and 0.9. This optimized oxygen dose was adopted as a base line for catalysts evaluation. The main gaseous products were carbon dioxide (CO2), carbon monoxide (CO), hydrogen (H2), and methane (CH4). Results also showed that the presence of Ni increased the total gas yield increased in the 7.5–18 wt Ni/Al2O3 catalyst. An increase in MR from 0.55 to 0.8 increased the of carbon dioxide and hydrogen yields from 1.8 to 3.8 mol/mol glucose and from 0.9 to 1.1 mol/mol. The carbon monoxide and methane yields remain constant at 2 and 0.5 mol/mol glucose, respectively. The introduction of hydrogen peroxide (H2O2) prior to the feed injection inhibited the catalyst activity and did not increase the hydrogen yield whereas the introduction of H2O2 after 15 min of reaction time increased the hydrogen yield from 0.62 mol/mol to 1.5 mol/mol. This study showed that approximately the same hydrogen yield can be obtained from the synthesized low nickel alumina loading (18 wt%) catalyst as with the 65 wt% nickel on silica–alumina loading commercial catalyst. The highest H2 yield of 1.5 mol/mol glucose was obtained with commercial Ni/silica–alumina with a BET surface area of 190 m2/g compared to 1.2 mol/mol with the synthesized Ni/θ alumina with a BET surface area of 46 m2/g.  相似文献   

11.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

12.
In this work, we report the synthesis, characterization and destabilization of lithium aluminum hydride by ad-mixing nanocrystalline magnesium hydride (e.g. LiAlH4 + nanoMgH2). A new nanoparticulate complex hydride mixture (Li–nMg–Al–H) was obtained by solid-state mechano-chemical milling of the parent compounds at ambient temperature. Nanosized MgH2 is shown to have greater and improved hydrogen performance in terms of storage capacity, kinetics, and initial temperature of decomposition, over the commercial MgH2. The pressure–composition isotherms (PCI) reveal that the destabilized LiAlH4 + nanoMgH2 possess ∼5.0 wt.% H2 reversible capacity at T ≤ 350 °C. Van't Hoff calculations demonstrate that the destabilized (LiAlH4 + nanoMgH2) complex materials have comparable enthalpy of hydrogen release (∼85 kJ/mole H2) to their pristine counterparts, LiAlH4 and MgH2. However, these new destabilized complex hydrides exhibit reversible hydrogen sorption behavior with fast kinetics.  相似文献   

13.
Post-consumer plastic waste derived from municipal solid waste was investigated using a two-stage, catalytic steam pyrolysis–gasification process for the production of hydrogen. The three important process parameters of catalyst:plastic ratio, gasification temperature and water injection rate were investigated. Temperature-programmed oxidation (TPO) and scanning electron microscopy (SEM) methods were used to analyse the reacted catalysts. The results showed that there was little influence of catalyst:plastic ratio between the range 0.5 and 2.0 (g/g) on the mass balance and gas composition for the pyrolysis–gasification of waste plastics; this might be due to the effective catalytic activity of the Ni–Mg–Al catalyst. However, increasing the gasification temperature and the water injection rate resulted in an increase of total gas yield and hydrogen production. The coke formation on the catalyst was reduced with increasing use of catalyst; however, a maximum coke formation (9.6 wt.%) was obtained at the gasification temperature of 700 °C when the influence of gasification temperature was investigated. The maximum coke formation was obtained at the water injection rate of 4.74 g h−1, and a more reactive form of coke seemed to be formed on the catalyst with an increase of the water injection rate, according to the TPO experiments.  相似文献   

14.
The CaLi2 alloy which was prepared by the induction melting method has been successfully hydrogenated. The CaLi2 alloy synthesized had a hexagonal C14-type Laves phase structure and absorbed 6.8–7.1 mass% hydrogen under the temperature range from 273 K to 393 K. The hydrogenated CaLi2 which consisted of CaH2 and LiH hydride phases did not desorb hydrogen under 10 kPa-H2 at the same temperatures. The hydrogen absorption kinetics measured under 3.1 MPa-H2 at room temperature showed that the hydrogen content reached to 6 mass% in 10 s. No obvious hydrogen desorption from the hydrogenated CaLi2 was observed even after evacuation for 20 h at 623 K.  相似文献   

15.
This work deals with the assessment of the thermo-kinetic properties of Mg–Fe based materials for hydrogen storage. Samples are prepared from MgxFe (x: 2, 3 and 15) elemental powder mixtures via low energy ball milling under hydrogen atmosphere at room temperature. The highest yield is obtained with Mg15Fe after 150 h of milling (90 wt% of MgH2). The thermodynamic characterization carried out between 523 and 673 K shows that the obtained Mg–Fe–H hydride systems have similar thermodynamic parameters, i.e. enthalpy and entropy. However, in equilibrium conditions, Mg15Fe has higher hydrogen capacity and small hysteresis. In dynamic conditions, Mg15Fe also shows better hydrogen capacity (4.85 wt% at 623 K absorbed in less than 10 min and after 100 absorption/desorption cycles), reasonably good absorption/desorption times and cycling stability in comparison to the other studied compositions. From hydrogen uptake rate measurements performed at 573 and 623 K, the rate-limiting step of the hydrogen uptake reaction is determined by fitting particle kinetic models. According to our results, the hydrogen uptake is diffusion controlled, and this mechanism does not change with the Mg–Fe proportion and temperature.  相似文献   

16.
The process of production of highly concentrated COx-free hydrogen and nanofibrous carbon (NFC) by catalytic propane decomposition on Ni and Ni–Cu catalysts (different in active phase composition) at relatively low temperatures (400–700 °C) was investigated. The bimetallic Ni–Cu catalysts showed significantly higher propane conversion and longer lifetime than monometallic Ni catalyst. The Ni (50 wt.%)–Cu (40 wt.%)/SiO2 catalyst exhibited the best activity and selectivity at 600 °C. Total hydrogen yield of 60.8 mol H2/gcat (during 24 h time on stream) and the total H2:CH4 ratio of 8.4 were obtained during propane decomposition under these optimal conditions. The possible reaction scheme of propane decomposition over Ni-based catalysts and the reasons of increasing the selectivity of hydrogen are discussed.  相似文献   

17.
The production of hydrogen from the two-stage pyrolysis–gasification of polypropylene using a Ni/CeO2/ZSM-5 catalyst has been investigated. Experiments were conducted on CeO2 loading, calcination temperature and Ni loading of the Ni/CeO2/ZSM-5 catalyst in relation to hydrogen production. The results indicated that with increasing CeO2 loading from 5 to 30 wt.% for the 10 wt.% Ni/CeO2/ZSM-5 catalyst calcined at 750 °C, hydrogen concentration in the gas product and the theoretical potential hydrogen production were decreased from 63.0 to 49.8 vol.% and 50.4 to 21.6 wt.%, respectively. In addition, the amount of coke deposited on the catalyst was reduced from 9.5 to 6.2 wt.%. The calcination temperature had little influence on hydrogen production for the catalyst containing 5 wt.% of CeO2. However, for the 10 wt.% Ni/CeO2/ZSM-5 catalyst with a CeO2 content of 10 or 30 wt.%, the catalytic activities reduced when the calcination temperature was increased from 500 to 750 °C. The SEM results showed that large amounts of filamentous carbons were formed on the surface of the catalysts. The investigation of different Ni content indicates that the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst containing 2 wt.% Ni showed poor catalytic activity in relation to the pyrolysis–gasification of polypropylene according to the theoretical potential H2 production (7.2 wt.%). Increasing the Ni loading to 5 or 10 wt.% in the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst, high potential hydrogen production was obtained.  相似文献   

18.
Mg–15 wt%Ni–5 wt%Fe2O3 (Mg155) was prepared by reactive mechanical grinding (RMG). Mg155 exhibited high hydriding and dehydriding rates even at the first cycle, and its activation was completed after only two hydriding–dehydriding cycles. The activated Mg155 absorbed 5.06 and 5.38 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 12 bar H2. It desorbed 1.50 and 5.28 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 1.0 bar H2. The initial hydrogen absorption rate decreased, but the hydrogen desorption rate increased rapidly with an increase in temperature from 563 K to 603 K. The rate-controlling step for the dehydriding reaction in a range from F ? 0.20 to F ? 0.75 is considered to be the chemical reaction at the Mg hydride/α-solid solution interface. The absorption and desorption PCT curves exhibited two plateaus at 573 K. The hydrogen-storage capacity of the activated Mg155 was about 6.43 wt% at 573 K.  相似文献   

19.
In this study, we prepared highly porous carbon-nanofiber-supported nickel nanoparticles as a promising material for hydrogen storage. The porous carbons were activated at 1050 °C, and the nickel nanoparticles were loaded by an electroless metal-plating method. The textural properties of the porous carbon nanofibers were analyzed using N2/77 K adsorption isotherms. The hydrogen storage capacity of the carbons was evaluated at 298 K and 100 bar. It was found that the amount of hydrogen stored was enhanced by increasing nickel content, showing 2.2 wt.% in the PCNF-Ni-40 sample (5.1 wt.% and 6.4% of nickel content and dispersion rate, respectively) owing to the effects of the spill-over of hydrogen molecules onto the metal–carbon interfaces. This result clearly indicates that the presence of highly dispersed nickel particles can enhance high-capacity hydrogen storage.  相似文献   

20.
Mesoporous alumina xerogel (AX) supports prepared by a sol–gel method were calcined at various temperatures. Ni/mesoporous alumina xerogel (Ni/AX) catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AX supports on the catalytic performance of Ni/AX catalysts in the steam reforming of LNG was investigated. Physical and chemical properties of AX supports and Ni/AX catalysts were strongly influenced by the calcination temperature of AX supports. Crystalline structure of AX supports was transformed in the sequence of γ-alumina → (γ + θ)-alumina → θ-alumina → (θ + α)-alumina with increasing calcination temperature from 700 to 1000 °C. Nickel species were strongly bonded to the divalent vacancy of γ-alumina, (γ + θ)-alumina, and θ-alumina through the formation of nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AX supports. Among the catalysts tested, Ni/AX-900 (nickel catalyst supported on AX that had been calcined at 900 °C) showed the best catalytic performance. The smallest nickel crystalline size and the strongest nickel–alumina interaction were responsible for high catalytic performance of Ni/AX-900 catalyst in the steam reforming of LNG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号