首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper analyzes innovative processes for producing hydrogen from fossil fuels conversion (natural gas, coal, lignite) based on chemical looping techniques, allowing intrinsic CO2 capture. This paper evaluates in details the iron-based chemical looping system used for hydrogen production in conjunction with natural gas and syngas produced from coal and lignite gasification. The paper assesses the potential applications of natural gas and syngas chemical looping combustion systems to generate hydrogen. Investigated plant concepts with natural gas and syngas-based chemical looping method produce 500 MW hydrogen (based on lower heating value) covering ancillary power consumption with an almost total decarbonisation rate of the fossil fuels used.The paper presents in details the plant concepts and the methodology used to evaluate the performances using critical design factors like: gasifier feeding system (various fuel transport gases), heat and power integration analysis, potential ways to increase the overall energy efficiency (e.g. steam integration of chemical looping unit into the combined cycle), hydrogen and carbon dioxide quality specifications considering the use of hydrogen in transport (fuel cells) and carbon dioxide storage in geological formation or used for EOR.  相似文献   

2.
In this paper, a chemical looping combustion (CLC) system, using haematite (Fe2O3) as an oxygen carrier, has been simulated in conjunction with a steam–coal gasification process. The analysis has assumed thermodynamic equilibrium throughout. Full heat integration was considered for a range of operating conditions (e.g. by varying oxygen carrier recycle rate). It was found that for low to moderate flows of oxidising steam, it was possible to operate within a regime which could be fully heat-integrated. Furthermore, the size of this operating regime increases with the recycle rate of oxygen carrier. The peak exergetic efficiencies achieved for fully heat-integrated systems were 48.4% and 58.3% at operating pressures of 1 atmosphere and 10 atmospheres respectively, and these were increased respectively to 53.7% and 59.7% when a bottoming steam turbine cycle was included to utilise waste heat. These values compare favourably with those achieved by hydrogen production via steam reformation of methane. The range of suitable operating conditions available at both pressures was encouraging, and showed considerable promise for the successful coupling of a chemical looping system with a gasifier.  相似文献   

3.
An integrated hydrogen and power co-generation system based on slurry-feed coal gasification and chemical looping hydrogen generation (CLH) was proposed with Shenhua coal as fuel and Fe2O3/MgAl2O4 as an oxygen carrier. The sensitivity analyses of the main units of the system were carried out respectively to optimize the parameters. The syngas can be converted completely in the fuel reactor, and both of the fuel reactor and steam reactor can maintain heat balance. The purity of hydrogen produced after water condensation is 100%. The energy and exergy analyses of the proposed system were studied. Pinch technology was adopted to get a reasonable design of the heat transfer network, and it is found pinch point appears at the hot side temperature of 224.7 °C. At the given status of the proposed system, the hydrogen yield is 1040.11 kg·h−1 and the CO2 capture rate is 94.56%. At the same time, its energy and exergy efficiencies are 46.21% and 47.22%, respectively. According to exergy analysis, the degree of exergy destruction is ranked. The gasifier unit has the most serious exergy destruction, followed by chemical looping hydrogen generation unit and the heat recovery steam generator unit.  相似文献   

4.
This paper analyzes a novel process for producing hydrogen and electricity from coal, based on chemical looping combustion (CLC) and gas turbine combined cycle, allowing for intrinsic capture of carbon dioxide. The core of the process consists of a three-reactors CLC system, where iron oxide particles are circulated to: (i) oxidize syngas in the fuel reactor (FR) providing a CO2 stream ready for sequestration after cooling and steam vapor condensation, (ii) reduce steam in the steam reactor (SR) to produce hydrogen, (iii) consume oxygen in the air reactor (AR) from air releasing heat to sustain the thermal balance of the CLC system and to generate electricity. A compacted fluidized bed, composed of two fuel reactors, is proposed here for full conversion of fuel gases in FR. The gasification CLC combined cycle plant for hydrogen and electricity cogeneration with Fe2O3/FeAl2O4 oxygen carriers was simulated using ASPEN® PLUS software. The plant consists of a supplementary firing reactor operating up to 1350 °C and three-reactors SR at 815 °C, FR at 900 °C and AR at 1000 °C. The results show that the electricity and hydrogen efficiencies are 14.46% and 36.93%, respectively, including hydrogen compression to 60 bar, CO2 compression to 121 bar, The CO2 capture efficiency is 89.62% with a CO2 emission of 238.9 g/kWh. The system has an electricity efficiency of 10.13% and a hydrogen efficiency of 41.51% without CO2 emission when supplementary firing is not used. The plant performance is attractive because of high energy conversion efficiency and low CO2 emission. Key parameters that affect the system performance are also discussed, including the conversion of steam to hydrogen in SR, supplementary firing temperature of the oxygen depleted air from AR, AR operation temperature, the flow of oxygen carriers, and the addition of inert support material to the oxygen carrier.  相似文献   

5.
Natural H2 in useful quantities is negligible, which makes hydrogen unsuitable as an energy resource compared to other fuels. H2 production by solar, biological, or electrical sources needs more energy than obtained by combusting it. Lower generation of pollutants and better energy efficiency makes hydrogen a potential energy carrier. Hydrogen finds potential applications in automobile and energy production. However, the cost of producing hydrogen is extremely high. Chemical-looping technology for H2 generation has caught widespread attention in recent years. This work, presents some recent findings and provides a comprehensive overview of different chemical looping techniques such as chemical looping reforming, syngas chemical looping, coal direct chemical looping, and chemical looping hydrogen generation method for H2 generation. The above processes are discussed in terms of the relevant chemical reactions and the associated heat of reactions to ascertain the overall endothermicity or exothermicity of the H2 production. We have compared the H2 yield data of different Fe/Ni, spinel and perovskites-based oxygen carriers (OC) reported in previous literature. This review is the first comprehensive study to compare the H2 yield data of all the previously reported oxygen carriers as a function of temperature and redox cycles. In addition, the article summarizes the characteristics and reaction mechanisms of various oxygen carrier materials used for H2 generation. Lastly, we have reviewed the application of Density Function Theory (DFT) to study the effect of various dopant addition on the efficiency of H2 production of the oxygen carriers and discussed ASPEN simulations of different chemical looping techniques.  相似文献   

6.
As a novel gasification technology, chemical looping gasification (CLG) was considered as a promising technology in solid fuel gasification. In this work, CLG was applied into microalgae, and the characteristics of syngas production and oxygen carrier in the presence of steam were obtained through experiments in a fixed bed reactor. The results showed that the partial oxidation of oxygen carrier improved the gasification efficiency from 61.65% to 81.64%, with the combustible gas yield of 1.05 Nm3/kg, and this promotion effect mainly occurred at char gasification stage. Also, an optimal Fe2O3/C molar ratio of 0.25 was determined for the maximum gasification efficiency. 800 °C was needed for the gasification efficiency over 70%, but excess temperature caused the formation of dense layer on oxygen carrier particle surface. Steam as gasification agent promoted syngas production, but excess steam decreased the gasification efficiency. Steam also enhanced the hydrogen production by the conversion of Fe/FeO into Fe3O4, avoiding the intensive reduction of oxygen carrier. The Fe2O3 oxygen carrier maintained a good reactivity in 10th cycle while used for microalgae CLG. The results indicated that CLG provided a potential route for producing combustible gas from microalgae.  相似文献   

7.
In this study, thermodynamic analysis of the syngas production using biodiesel derived from waste cooking oil is studied based on the chemical looping reforming (CLR) process. The NiO is used as the oxygen carrier to carry out the thermodynamic analysis. Syngas with various H2/CO ratios can be obtained by chemical looping dry reforming (CL-DR) or steam reforming (CL-SR). It is found that the syngas obtained from CL-DR is suitable for long-chain carbon fuel synthesis while syngas obtained from CL-SR is suitable for methanol synthesis. The carbon-free syngas production can be obtained when reforming temperature is higher than 700 °C for all processes. To convert the carbon resulted from biodiesel coking and operate the CLR with a lower oxygen carrier flow rate, a carbon reactor is introduced between the air and fuel reactors for removing the carbon using H2O or CO2 as the oxidizing agent. Because of the endothermic nature of both Boudouard and water-gas reactions, the carbon conversion in the carbon reactor increases with increased reaction temperature. High purity H2 or CO yield can be obtained when the carbon reactor is operated with high reaction temperature and oxidizing agent flow.  相似文献   

8.
Chemical looping gasification (CLG) is regarded as an efficient way for the utilization of solid fuel and hydrogen-enriched syngas production. In this work, a thermodynamic analysis is carried out to evaluate the CLG performance of coal on the basis of Gibbs free energy minimization. In order to enhance the gasification process, CO2 sorption is employed and sorbents are circulated in the whole system. The influence of operating parameters on the CLG performance as well as heat requirement of the system is further examined. The results reveal that the addition of sorbent can promote the hydrogen production and provide the heat for the reaction in the fuel reactor (FR), whereas additional energy input is still required for the whole system. A proper increase of oxygen carrier circulation rate can achieve the auto-thermal condition of the system.  相似文献   

9.
Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO2 emission. To improve CO2 capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al2O3 oxygen carrier in a 1 kWth prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO2 capture efficiency at a fuel reactor temperature of 985 °C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO2 formation, and H2S abatement in the fuel reactor. The increase of SO2 in the fuel reactor accelerates the reaction of SO2 with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO2 in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the decrease of residual char entering the air reactor from the fuel reactor, and the decrease of SO2 from sulfur in the residual char burnt with air in the air reactor.  相似文献   

10.
This study was aimed at proposing a novel integrated process for co-production of hydrogen and electricity through integrating biomass gasification, chemical looping combustion, and electrical power generation cycle with CO2 capture. Syngas obtained from biomass gasification was used as fuel for chemical looping combustion process. Calcium oxide metal oxide was used as oxygen carrier in the chemical looping system. The effluent stream of the chemical looping system was then transferred through a bottoming power generation cycle with carbon capture capability. The products achieved through the proposed process were highly-pure hydrogen and electricity generated by chemical looping and power generation cycle, respectively. Moreover, LNG cold energy was used as heat sink to improve the electrical power generation efficiency of the process. Sensitivity analysis was also carried out to scrutinize the effects of influential parameters, i.e., carbonator temperature, steam/biomass ratio, gasification temperature, gas turbine inlet stream temperature, and liquefied natural gas (LNG) flow rate on the plant performance. Overall, the optimum heat integration was achieved among the sub-systems of the plant while a high energy efficiency and zero CO2 emission were also accomplished. The findings of the present study could assist future investigations in analyzing the performance of integrated processes and in investigating optimal operating conditions of such systems.  相似文献   

11.
In this article, a novel cycle configuration has been studied, termed the extended chemical looping combustion integrated in a steam‐injected gas turbine cycle. The products of this system are hydrogen, heat, and electrical power. Furthermore, the system inherently separates the CO2 and hydrogen that is produced during the combustion. The core process is an extended chemical looping combustion (exCLC) process which is based on classical chemical looping combustion (CLC). In classical CLC, a solid oxygen carrier circulates between two fluidized bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In exCLC the oxygen carrier circulates along with a carbon carrier between three fluidized bed reactors, one to oxidize the oxygen carrier, one to produces and separate the hydrogen, and one to regenerate the carbon carrier. The impacts of process parameters, such as flowrates and temperatures have been studied on the efficiencies of producing electrical power, hydrogen, and district heating and on the degree of capturing CO2. The result shows that this process has the potential to achieve a thermal efficiency of 54% while 96% of the CO2 is captured and compressed to 110 bar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO2 is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO2 capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH4 concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 °C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO2 capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 °C. The inherent loss of CO2 capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor.  相似文献   

13.
In order to produce high-quality bio-oils and syngas from biomass, a novel pyrolysis approach based on the chemical looping concept, namely chemical looping pyrolysis (CLPy), was proposed. In the current work, thermodynamic feasibility study and experimental investigations of the proposed CLPy with calcium-ferrite oxygen carriers and Nannochloropsis sp. microalgal biomass were conducted. The results suggested that the reduced calcium-ferrite oxygen carrier facilitated the denitrification, ketonization, and hydrodeoxygenation (HDO) of bio-oils during the pyrolysis stage. Since large amounts of oxygen in bio-oils were transferred to the reduced oxygen carrier, the heating value of bio-oils was remarkably increased up to 34.2 MJ/kg and 36.0 MJ/kg by employing the reduced CaFe2O4 and Ca2Fe2O5 oxygen carrier, respectively. In addition, a high H2 content of 50% in the pyrolysis gas was observed at the optimal pyrolysis temperature. In the gasification stage, the production of high-quality syngas was achieved. The content of H2 accounted for up to 70% of the gasification products when taking steam as gasifying agent, while that of CO was composed of 66% without the use of a gasifying agent. Moreover, the oxygen carrier was reduced to its reduction state, available for the next loop. In summary, CLPy proposed in this work involves the continuous transference of the oxygen from bio-oils to syngas by an oxygen carrier and provides a brand-new approach for the comprehensive utilization of biomass.  相似文献   

14.
The catalytic steam reforming of shale gas was examined over NiO on Al2O3 and NiO on CaO/Al2O3 in the double role of catalysts and oxygen carrier (OC) when operating in chemical looping in a packed bed reactor at 1 bar pressure and S:C 3. The effects of gas hourly space velocity GHSV (h?1), reforming temperatures (600–750 °C) and catalyst type on conventional steam reforming (C-SR) was first evaluated. The feasibility of chemical looping steam reforming (CL-SR) of shale gas at 750 °C with NiO on CaO/Al2O3 was then assessed and demonstrated a significant deterioration after about 9 successive reduction-oxidation cycles. But, fuel conversion was high over 80% approximately prior to deterioration of the catalyst/OC, that can be strongly attributed to the high operating temperature in favour of the steam reforming process.  相似文献   

15.
This paper evaluates hydrogen and power co-generation based on direct coal chemical looping systems with total decarbonization of the fossil fuel. As an illustrative example, an iron-based chemical looping system was assessed in various plant configurations. The designs generate 300–450 MW net electricity with flexible hydrogen output in the range of 0–200 MWth (LHV). The capacity of evaluated plant concepts to have a flexible hydrogen output is an important aspect for integration in modern energy conversion systems. The carbon capture rate of evaluated concepts is almost total (>99%). The paper presents in details evaluated plant configurations, operational aspects as well as mass and energy integration issues. For comparison reason, a syngas-based chemical looping concept and Selexol®-based pre-combustion capture configuration were also presented. Direct coal chemical looping configuration has significant advantages compared with syngas-based looping systems as well as solvent-based carbon capture configurations, the more important being higher energy efficiency, lower (or even zero) oxygen consumption and lower plant complexity. The results showed a clear increase of overall energy efficiency in comparison to the benchmark cases.  相似文献   

16.
The thermodynamic potential of a chemical looping gasification with liquid bismuth oxide for the production of syngas was assessed using thermo-chemical analysis. In the proposed process, the feedstock is partially oxidised by the molten bismuth in the gasification reactor and then oxidised with air in the air reactor. The motivation for this process is its potential to avoid both the technical challenges associated with the use of solid oxygen carriers in conventional chemical looping gasification systems (e.g. agglomeration and sintering of solid-state oxygen carrier) and the challenge of dilution of syngas with nitrogen that occurs in conventional air gasification systems. This revealed thermochemical potential to achieve a higher quality of syngas for a given amount of steam than has been reported previously for other gasification systems at a moderate temperature of 850 °C. Plausible approaches to address the research challenges that need to be overcome to implement the method are also identified, justifying further development of the technology.  相似文献   

17.
Steam methane reforming (SMR) needs the reaction heat at a temperature above 800 °C provided by the combustion of natural gas and suffers from adverse environmental impact and the hydrogen separated from other chemicals needs extra energy penalty. In order to avoid the expensive cost and high power consumption caused by capturing CO2 after combustion in SMR, natural gas Chemical Looping Reforming (CLR) is proposed, where the chemical looping combustion of metal oxides replaced the direct combustion of NG to convert natural gas to hydrogen and carbon dioxide. Although CO2 can be separated with less energy penalty when combustion, CLR still require higher temperature heat for the hydrogen production and cause the poor sintering of oxygen carriers (OC). Here, we report a high-rate hydrogen production and low-energy penalty of strategy by natural gas chemical-looping process with both metallic oxide reduction and metal oxidation coupled with steam. Fe3O4 is employed as an oxygen carrier. Different from the common chemical looping reforming, the double side reactions of both the reduction and oxidization enable to provide the hydrogen in the range of 500–600 °C under the atmospheric pressure. Furthermore, the CO2 is absorbed and captured with reduction reaction simultaneously.Through the thermodynamic analysis and irreversibility analysis of hydrogen production by natural gas via chemical looping reforming at atmospheric pressure, we provide a possibility of hydrogen production from methane at moderate temperature. The reported results in this paper should be viewed as optimistic due to several idealized assumptions: Considering that the chemical looping reaction is carried out at the equilibrium temperature of 500 °C, and complete CO2 capture can be achieved. It is assumed that the unreacted methane and hydrogen are completely separated by physical adsorption. This paper may have the potential of saving the natural gas consumption required to produce 1 m3 H2 and reducing the cost of hydrogen production.  相似文献   

18.
Synthesis gas, a mixture of hydrogen and carbon monoxide, could be produced in a chemical looping process. The objective of this work is the modeling of syngas production in a fixed bed microreactor by chemical looping reforming. A perovskite oxygen carrier was used for the reduction of methane to syngas. Twenty one gas-solid kinetic models were applied to the experimental data in which their parameters were estimated using an optimization code. The results show that among all models, reaction order model is the most preferable choice with satisfactory fitting criteria. The gas-solid model was coupled with a catalytic scheme to predict not only the conversion of perovskite oxygen carrier, but also the catalytic performance of the solid particles for syngas production. The kinetic parameters of the unified model were evaluated based on the experimental data of a fixed bed reactor. Analysis of both perovskite and nickel oxide, oxygen carriers shows that perovskite particles could convert 50 times slower than those of nickel oxide. A H2/CO ratio of below 10 was obtained in a period of time. A large amount of hydrogen was produced after completing gas-solid reactions which was due to cracking of methane to carbon and hydrogen. Although hydrogen was the main outlet product afterwards, corresponding carbon formation is a problem which should be avoided. The reduction of methane was proposed before 500 s with a carbon formation of below 0.04 kg carbon per one kg of perovskite carrier. Solid reduction conversion, methane consumption and product distribution were analyzed inside the microreactor.  相似文献   

19.
The proof of concept for the production of pure pressurized hydrogen from hydrocarbons in combination with the sequestration of a pure stream of carbon dioxide with the reformer steam iron cycle is presented. The iron oxide based oxygen carrier (95% Fe2O3, 5% Al2O3) is reduced with syngas and oxidized with steam at 1023 K. The carbon dioxide separation is achieved via partial reduction of the oxygen carrier from Fe2O3 to Fe3O4 yielding thermodynamically to a product gas only containing CO2 and H2O. By the subsequent condensation of steam, pure CO2 is sequestrated. After each steam oxidation phase, an air oxidation was applied to restore the oxygen carrier to hematite level. Product gas pressures of up to 30.1 bar and hydrogen purities exceeding 99% were achieved via steam oxidations. The main impurities in the product gas are carbon monoxide and carbon dioxide, which originate from solid carbon depositions or from stored carbonaceous molecules inside the pores of the contact mass. The oxygen carrier samples were characterized using elemental analysis, BET surface area measurement, XRD powder diffraction, SEM and light microscopy. The maximum pressure of 95 bar was demonstrated for hydrogen production in the steam oxidation phase after the full oxygen carrier reduction, significantly reducing the energy demand for compressors in mobility applications.  相似文献   

20.
Because of its low cost, an iron-based oxygen carrier is a promising candidate for hydrogen-rich syngas production from the chemical looping gasification of biomass. However, it needs modification from a reactivity point of view. In this study effect of Mn doping on Fe2O3 has been investigated for hydrogen-rich syngas production from biomass char at different temperatures (700–900 °C) and steam flow rates (60–100 μL/min). Several techniques (XRD, XPS, BET, and TPR-H2) have been utilized to characterize fresh and spent oxygen carriers. The result demonstrated Mn-doing boosted the redox activity and the amount of oxygen vacancies, which increased hydrogen gas generation. Hydrogen production displayed different behavior across temperatures due to detecting Fe2O3 and MnFeO3 phases for spent oxygen carriers. For the Fe2O3 oxygen carrier hydrogen gas yield is 1.67 Nm3/kg which is due to reduction of Fe2O3 phase to Fe3O4. However, the MnFe2O4 spinel phase detected in the spent MnFeO3 oxygen carrier is a reason for improving hydrogen gas yield to 1.84 Nm3/kg. Change reaction temperature from 900 °C to 850 °C reduced hydrogen gas yield from 1.84 Nm3/kg to 1.83 Nm3/kg for with MnFeO3 oxygen carrier. Regarding different steam flows, the proper flow rates that can maintain the formed phases and obtained best hydrogen gas yield are 80 and 90 μL/min, respectively. Meanwhile, the best hydrogen gas yield (2.21Nm3/kg) are obtained with MnFeO3 oxygen carrier at optimum conditions (850 °C and 90 μL/min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号