共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhodobacter sphaeroides MDC 6521 isolated from Arzni mineral springs in Armenia is able to produce bio-hydrogen (H2) in anaerobic conditions upon illumination in the presence of various metal ions. The significant aspect in regulation of H2 production by these bacteria and its energetics is the requirement for F0F1-ATPase, the main membrane enzyme responsible for generation of proton motive force under anaerobic conditions. In order to determine the mediatory role of F0F1 in H2 production, the effects of various metal ions (Mn2+, Mg2+, Fe2+, Ni2+, and Mo6+) on N,N′-dicyclohexylcarbodiimide inhibited ATPase activity of R. sphaeroides membrane vesicles were investigated. These ions in appropriate concentrations considerably enhanced H2 production, which was not observed in the absence of Fe2+, indicate the requirement for Fe2+. The R. sphaeroides membrane vesicles demonstrated significant ATPase activity. In the absence of Fe2+ inhibition (∼80%) of ATPase activity was observed, which was increased by addition of metal ions. A higher ATPase activity was detected in the presence of Fe2+ (80 μM) and Mo6+ (16 μM). These results indicate a relationship between the F0F1-ATPase activity and H2 production that might be a significant pathway to provide novel evidence of a requirement for F0F1-ATPase in H2 production by R. sphaeroides. 相似文献
2.
Purple non-sulfur (PNS) bacteria can convert volatile fatty acids into hydrogen with a high substrate conversion efficiency. However, when PNS bacteria utilize sugars as a carbon source, such as glucose and sucrose, the substrate conversion efficiency is relatively low. In order to investigate the contributions of the glucose catabolic pathways in Rhodobacter sphaeroides 6016 to its hydrogen production, the cfxA gene from the Embden–Meyerhof–Parnas (EMP) pathway, edd from the Entner–Doudoroff (ED) pathway, and kdg from the semi-phosphorylative ED bypass were knocked out to construct the mutant strains edd−, cfxA−, and kdg−, respectively. Additionally, two of these three genes were knocked out to construct the mutant strains kdg−edd−, kdg−cfxA−, and cfxA−edd−. Hydrogen productions by these mutant strains were compared to that of the wild type strain 6016 using 25 mM glucose as a carbon source. Compared to 6016, variations in hydrogen production and growth were detected in the edd mutant strains (kdg−edd−, cfxA−edd−, and edd−), while no obvious changes were detected in the others. Notably, the kdg−edd− mutant did not produce hydrogen, and its maximum growth was 70% less than that of R. sphaeroides 6016. These results indicate that the ED pathway and semi-phosphorylative ED bypass have a governing impact on cell growth and hydrogen production from glucose in R. sphaeroides 6016. The potential synergistic function of the ED pathway and semi-phosphorylative ED bypass and the reasons for the low hydrogen yield from sugar carbon sources in R. sphaeroides 6016 are discussed. 相似文献
3.
The suitability and limitation of yeast extract as nitrogen source to support cell growth and to enhance hydrogen photoproduction by Rhodobacter sphaeroides strains MDC6521 and MDC6522 isolated from mineral springs in Armenia was investigated during the anaerobic growth. Yeast extract (2 g L−1) was indicated to be an effective nitrogen source for bacterial cell growth stimulation and enhanced H2 production (compared to glutamate). Both strains followed similar growth patterns in medium with yeast extract as nitrogen source and succinate or malate as carbon source. The highest growth rate was obtained for bacterial cells with yeast extract: the latter added gave a stimulated (2–3.5 fold) growth rate than using glutamate. R. sphaeroides suspension oxidation–reduction potential (ORP), which was measured with a platinum electrode, decreased down to low negative values with nitrogen source for both strains. ORP decreased down to more negative values (−610 ± 25 mV) in the presence of yeast extract than when adding glutamate (−405 ± 15 mV) compared to the control (without nitrogen source addition): the significant decrease of ORP indicated enhanced (∼6 fold) H2 yield. The noticeable ORP decrease measured with the titanium-silicate electrode and simultaneously the increase of extracellular pH ([pH]out) were observed; ORP was more negative at alkaline [pH]out. Thus, the optimal culture conditions with nitrogen and carbon sources for bacterial growth stimulation and enhanced H2 production were established. The ORP decrease together with the increase of [pH]out point out a significant role of reduction processes in cell growth and ability of bacteria to live. 相似文献
4.
5.
Jyumpei Kobayashi Shinya Hasegawa Keisuke Itou Kazuaki Yoshimune Tomoe Komoriya Yasuo Asada Hideki Kohno 《International Journal of Hydrogen Energy》2012
Rhodobacter sphaeroides RV (RV) is a hydrogen-producing bacterium exhibiting the highest yield of hydrogen production from organic acids such as lactate and acetate, which are the byproducts of hydrogen fermentation by hydrogen-producing anaerobic bacteria. Co-fermentation of the RV strain with anaerobic bacteria is an efficient method of hydrogen production. However, less than 21 mM acetate is produced by the anaerobic bacteria, which is too low for efficient hydrogen production by the RV strain; it requires approximately 75 mM acetate. In this study, 2 distinct isozymes of aldehyde dehydrogenase from Rhodospirillum rubrum were separately overexpressed in the RV strain. The recombinant RV strains that were designated as RVAD1 and RVAD2, exhibited 13-fold higher ALDH activities than the wild-type RV strain. Hydrogen yields of both of the recombinant strains were 1.4-fold higher than that of the RV strain in 21 mM acetate. In 43 mM acetate, the RVAD1 strain showed higher yield, though the RVAD2 strain showed lower yield as compared to that of the RV strain. In 64 mM acetate and all concentrations of lactate tested (21, 43 and 64 mM), the yields of the recombinant strains were lower than those of the RV strain. The intact (empty) expression plasmid increased the ALDH activity and had little effect on the hydrogen production in acetate, however, it decreased the production in lactate. At the beginning of the fermentation process, when very little hydrogen had been produced, the recombinant strains expressing the ALDH gene consumed smaller amounts of acetate compared to the wild-type strain. We have discussed the effects of ALDH on hydrogen production in this report. 相似文献
6.
Rhodobacter sphaeroides RV was employed to produce hydrogen for the photo-fermentation of sole (acetate, propionate, butyrate, lactate, malate, succinate, ethanol, glucose, citrate and sodium carbonate) and compound carbon sources (malate and succinate, lactate and succinate). The concentrations of sole carbon sources on hydrogen production were investigated in batch assays at 0.8 g/L sodium glutamate and the maximum hydrogen yield was 424 mmol H2/mol-substrate obtained at 0.8 g/L sodium propionate. The maximum hydrogen yield reached 794 mmol H2/mol-substrate for 2.02 g lactate and 2.0 g succinate as the compound carbon source. The results showed hydrogen production for the compound carbon source was better than the sole carbon source. 相似文献
7.
Jiang-Yu Ye Tao Liu Yu Chen Qiang Liao Zhong-Kang Wang Gang-Cai Chen 《International Journal of Hydrogen Energy》2013
Poly-β-hydroxy butyric acid (PHB) accumulation and gaseous H2 release are regarded as alternatives for expending reducing power. Some researchers suggested that quorum-sensing system affects PHB accumulation in Rhodobacter sphaeroides, but whether the system plays regulation role between hydrogen producing and PHB synthesis is still unknown. By adding autoinducer of R. sphaeroides into its culture solutions, measuring its total hydrogen production, PHB content and PHB synthase activity, the function of quorum-sensing on PHB accumulation and hydrogen production was preliminarily investigated. Compared with the control, the total gas productions in experimental groups increased accompanying slight decrease of PHB contents, which was partially caused by the reduction of PHB synthase activities. Biolog tests indicated the carbon source utilization profiles, especially those involving fatty acids and butanoate metabolism, had partly changed after exogenous signal molecules added. These results suggest that quorum-sensing is involved in signal regulation between PHB accumulation and hydrogen production in R. sphaeroides. 相似文献
8.
Walailak Pattanamanee Wanna Choorit Duangporn Kantachote Yusuf Chisti 《International Journal of Hydrogen Energy》2012
Photofermentation of acid hydrolyzed oil palm empty fruit bunch is reported for hydrogen production in repeated-batch fermentations using the bacterium Rhodobacter sphaeroides S10. Photofermentations were carried out at 35 °C at an incident light level of 10 klux. At specified times, different specified volumes of the culture broth were removed and replaced with an equal volume of the fresh medium. The initial mixed carbon (glucose, xylose, acetic acid) content in the medium of the repeated-batch reactors was adjusted to 20 mM. The kinetics of hydrogen production were evaluated in repeated-batch fermentations carried out in various ways: different volume exchange levels, different switch times from batch to repeated-batch operation, and different cycle times. 相似文献
9.
10.
Hongliang Han Qibo JiaBiqian Liu Haijun Yang Jianquan Shen 《International Journal of Hydrogen Energy》2013
The study of photosynthetic hydrogen production by using Rhodobacter sphaeroides RV from acetate was described. We investigated the effects of light source (fluorescent, halogen and tungsten lamps), light intensity (1200–6000 lux), inoculum quantity (OD660 0.212–OD660 1.082) and initial pH (4.0–10.0) on biohydrogen production. The results indicated that the hydrogen production for halogen and tungsten lamps was better than it for fluorescent lamp as light source. The best light intensity of hydrogen production was 3600 lux for tungsten lamp as light source. Inoculum quantity experiments indicated that the higher hydrogen production volume and hydrogen conversion rate were obtained at initial OD660 of 0.931. The effect of initial pH on hydrogen production indicated that the maximum hydrogen yield reached to 653.2 mmol H2/mol acetate at initial pH 7.0. 相似文献
11.
Some amino acids (alanine, asparagine, glutamate, glycine, proline, and tyrosine) were used as nitrogen sources in combination with carbon sources (succinate and malate) to study growth properties and H2 production by purple non-sulfur bacterium Rhodobacter sphaeroides strains A-10 and D-3. Both strains produced H2 in succinate–glutamate and malate–glutamate media. Succinate was a better carbon source than malate. In comparison with strain D-3, strain A-10 was able to utilize proline, alanine or tyrosine as nitrogen sources in succinate medium and to produce H2. Both strains were unable to produce H2 in the presence of asparagine or glycine as nitrogen sources. N,N′-dicyclohexylcarbodiimide, the F0F1-ATPase inhibitor, led to marked inhibition of H2 production activity of R. sphaeroides. The results suggest that the R. sphaeroides cells growth can be achieved by the use of a large diversity of substrates but only some of them can increase the H2 production rate. 相似文献
12.
Soo Youn Lee Hyun Jeong Lee Jae-Min Park Jin Hyung Lee Jin-Soo Park Hwa Sung Shin Yang-Hoon Kim Jiho Min 《International Journal of Hydrogen Energy》2010
In this study, recombinant plasmid was constructed to analyze the effect of hydrogen production on the expression HupSL hydrogenase isolated from Rhodobacter sphaeroides in Escherichia coli. Although most of recombinant HupSL hydrogenase was produced as inclusion bodies the solubility of the protein increased significantly when the expression temperature shifted from 37 °C to 30 °C. Hydrogen production by expression of HupSL hydrogenase from recombinant E. coli increased 20.9-fold compared to control E. coli and 218-fold compared to wild type R. sphaeroides under anaerobic dark condition. The results demonstrate that HupSL hydrogenase, consisting of small and large subunits of hydrogenase isolated from R. sphaeroides, increases hydrogen production in recombinant E. coli. In addition conditions for enhancing the activity of HupSL hydrogenase in E. coli were suggested and were used to increase bacterial hydrogen production. 相似文献
13.
Heguang Zhu Herbert H.P. Fang Tong Zhang Lee A. Beaudette 《International Journal of Hydrogen Energy》2007
The effect of ferrous ion (0–3.2 mg/l) on photo heterotrophic hydrogen production was studied in batch culture using sodium lactate as substrate. The results showed that hydrogen production by Rhodobacter sphaeroides was significantly suppressed when Fe2+ was limited. Hydrogen production increased linearly with an increase in Fe2+ concentration in the range of 0–1.6 mg/l; reaching a maximum at 2.4 mg/l. When hydrogen production was suppressed in the above medium, a pH increase to 8.9 was observed, and the ratio of lactate utilized to total organic carbon removal was found to be increased, indicating that more soluble organic products were produced. Under the Fe2+ limited conditions, ferrous iron was shown to have a greater effect on hydrogen production by Rb. sphaeroides than that by the anaerobic heterotrophic bacterium Clostridium butyricum. 相似文献
14.
Xu Li Yong-Hong WangJu Chu Ming ZhangMing-Zhi Huang Ying-Ping Zhuang 《International Journal of Hydrogen Energy》2009
Biohydrogen has gained attention due to its potential as a sustainable alternative to conventional methods for hydrogen production. In this study, the effect of light intensity as well as cultivation method (standing- and shaking-culture) on the cell growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated in 38-ml anaerobic photobioreactor with RCVBN medium. Thus, a novel shaking and extra-light supplementation (SELS) approach was developed to enhance the phototrophic H2 production by R. sphaeroides ZX-5 using malate as the sole carbon source. The optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000–8000 lux, markedly higher than that for standing-culture (4000–5000 lux). Under shaking and elevated illumination (7000–8000 lux), the culture was effective in promoting photo-H2 production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000–5000 lux conditions. The highest hydrogen-producing rate of 165.9 ml H2/l h was observed under the application of SELS approach. To our knowledge, this record is currently the highest hydrogen production rate of non-immobilized purple non-sulphur (PNS) bacteria. This optimal performance of photo-H2 production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H2 production efficiency. 相似文献
15.
Hongliang Han Qibo JiaBiqian Liu Haijun Yang Jianquan Shen 《International Journal of Hydrogen Energy》2013
In this study, hydrogen production by Rhodobacter sphaeroides RV from acetate was investigated. Ammonium sulphate and sodium glutamate were used to study the effects of nitrogen sources on photosynthetic hydrogen production. The results showed the optimal concentrations for ammonium sulphate and sodium glutamate were in the range of 0.4–0.8 g/L. Orthogonal array design was applied to optimize the hydrogen-producing conditions of the concentrations of yeast, FeSO4 and NiCl2. The theoretical optimal condition for hydrogen production was as follow: yeast 0.1 g/L, FeSO4 100 mg/L and NiCl2 20 mg/L. 相似文献
16.
The genes coding for two PII-like proteins, GlnB and GlnK, which play key roles in repressing the nitrogenase expression in the presence of ammonium ion, were interrupted from the chromosome of Rhodobacter sphaeroides. The glnB–glnK mutant exhibits the less ammonium ion-mediated repression for nitrogenase compared with its parental strain, which results in more H2 accumulation by the mutant under the conditions. Rhodospirillum rubrum produces H2 by both nitrogenase and hydrogenase. R. rubrum containing the recombinant pRK415 with an insert of hydC coding for its own Fe-only hydrogenase showed twofold higher accumulation of H2 in the presence of pyruvate under photoheterotrophic conditions, which was not observed in the absence of pyruvate. The same was true with R. rubrum containing the recombinant pRK415 cloned with hydA coding for Fe-only hydrogenase of Clostridium acetobutylicum. Thus, Fe-only hydrogenase requires pyruvate as an electron donor for the production of H2. 相似文献
17.
Xu LiZhen-Zhen Dai Yong-Hong Wang Si-Liang Zhang 《International Journal of Hydrogen Energy》2011,36(20):12794-12802
In this study, a new outer-cycle flat-panel photobioreactor was designed for an anaerobic, photo-fermentation process by Rhodobacter sphaeroides ZX-5. In order to obtain the high hydrogen yield, photo-hydrogen production by fed-batch culture with on-line oxidation-reduction potential (ORP) feedback control was investigated. Meanwhile, the effects of feeding malic acid concentration and pH adjustment on the growth and hydrogen production of R. sphaeroides ZX-5 were studied. In the entire fed-batch culture, biomass (i.e., OD660) rapidly increased up to 1.79 within 18 h, and then OD660 value stayed constant within a range of 1.85-2.18 until the end of the photo-fermentation. The cumulative hydrogen volumes in each phase of fed-batch process were 2339, 1439, 1328, and 510 ml H2/l-culture, respectively. Throughout the entire repeated fed-batch photo-fermentation, the maximum substrate conversion efficiency of 73.03% was observed in the first fed-batch process, obviously higher than that obtained from batch culture process (59.81%). In addition, compared to the batch culture, a much higher maximum hydrogen production rate (102.33 ml H2/l h) was achieved during fed-batch culture. The results demonstrated that photo-hydrogen production using fed-batch operation based on ORP feedback control is a favorable choice of sustainable and feasible strategy to improve phototrophic hydrogen production efficiency. 相似文献
18.
Various metal ions play a key role in biohydrogen (H2) production by phototrophic bacteria through incorporation into or stimulating the responsible enzymes and/or related pathways. The Ni (II) and Mg (II) ions effects on growth and H2 production by Rhodobacter sphaeroides strain MDC6521 isolated from mineral springs in Armenia were established. The highest growth specific rate was obtained with 4–6 μM Ni2+ and 5 mM Mg2+. pH of the growth medium changed from 7.0 to 9.2–9.4 during the bacterial growth up to 72 h in spite of Ni2+ added but pH increased in different manner with Mg2+. In the presence of 2–4 μM Ni2+ external oxidation-reduction potential (ORP) decreased to more negative values (−800 ± 15 mV). This decrease of ORP indicated ∼2.7-fold enhanced H2 yield (9.80 mmol L−1) with Ni2+ compared with the control (without Ni2+). The H2 yield determined in the medium with Mg2+ was ∼2.2 fold higher than that with 1 mM Mg2+. These results reveal new regulatory ways to improve H2 production by R. sphaeroides those were depending on Ni2+ and Mg2+ of different concentrations. 相似文献
19.
Xu LiHuan Shi Yonghong Wang Siliang Zhang Ju ChuMing Zhang Mingzhi HuangYingping Zhuang 《International Journal of Hydrogen Energy》2011,36(16):9620-9625
The effects of vitamins (nicotinic acid, vitamin B1 and biotin) on the growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated by batch culture in this study. The results showed that nicotinic acid, as a precursor of NAD+/NADH, plays a crucial role in effectively enhancing the phototrophic hydrogen synthesis during photo-fermentation process. Lack of nicotinic acid in hydrogen production medium resulted in the failure of photo-hydrogen production. In addition, though vitamin B1 and biotin do not have direct impact on photo-hydrogen production, they are still essential and must exist in either growth medium or hydrogen production medium. Without either of them, photo-hydrogen production decreased seriously, regardless of the existence of nicotinic acid. 相似文献
20.
Rhodobacter sphaeroides O.U. 001 (concentration of inoculum-0.36 g dry wt/l) and brewery wastewaters were applied in photobiogeneration of hydrogen under illumination of 116 W/m2. The best results were obtained with filtered wastewaters sterilized at 120 °C for 20 min and maximal concentration of waste in medium equal 10% v/v. The main product in generated biogas was hydrogen (90%). After sterilization the amount of generated hydrogen was tripled (from 0.76 to 2.2 l H2/l medium), whereas waste concentration of 10% v/v resulted in the best substrate yield (0.22 l H2/l of waste). Under these conditions the amount of generated hydrogen was 2.24 l H2/l medium and light conversion efficiency reached value of 1.7%. The modified Gompertz equations served in modeling of the kinetics of the studied process. 相似文献