首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

2.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

3.
4.
Hydrogen-fueled internal combustion engines (H2ICEs) have been the topic of research for many decades, and contemporary reviews have surveyed the relevant literature. Because of a number of relatively large R&D projects that have been ongoing recently, much progress has been made that is worth reporting. Specifically, this paper reviews the advancements made in plotting the possibilities offered by direct injection of hydrogen, in-cylinder heat transfer, modeling and combustion strategies (on an engine as well as vehicle level). These efforts have resulted in impressive efficiency numbers, both at peak and part load operation, while keeping emissions far below regulatory limits and reaching satisfactory specific power outputs. New demonstration vehicles have been put on the road showing the relatively low barriers (on a vehicle level) to introduce hydrogen engined transportation and these are briefly described. The paper discusses the merits of H2ICEs but also what makes them potentially unfit as a realistic alternative. Finally, the paper concludes with the main areas of research that require further efforts.  相似文献   

5.
With higher rate of depletion of the non-renewable fuels, the quest for an appropriate alternative fuel has gathered great momentum. Though diesel engines are the most trusted power sources in the transportation industry, due to stringent emission norms and rapid depletion of petroleum resources there has been a continuous effort to use alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system.In the present investigation, hydrogen-enriched air is used as intake charge in a diesel engine adopting exhaust gas recirculation (EGR) technique with hydrogen flow rate at 20 l/min. Experiments are conducted in a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine coupled to an electrical generator. Performance parameters such as specific energy consumption, brake thermal efficiency are determined and emissions such as oxides of nitrogen, hydrocarbon, carbon monoxide, particulate matter, smoke and exhaust gas temperature are measured. Usage of hydrogen in dual fuel mode with EGR technique results in lowered smoke level, particulate and NOx emissions.  相似文献   

6.
周斟 《江西能源》2005,(3):27-29
本文回顾了废气再循环(EGR)在减少排放,特别是减少NOx排放上的潜力以及限定这一技术的应用范围。详细分析了RGR装置对柴油机的排放和性能的影响,通过深入分析,发现在柴油机进气中引入废气再循环(EGR),相当如置换了部分吸入的空气,这种方式能充分减少NOx的排放。因此,废气再循环的使用是最有效改善尾气排放的技术措施之一。  相似文献   

7.
Hydrogen-fueled internal combustion engines are considered to be more efficient and cleaner alternatives to their fossil-fueled counterparts. Reasonably fast and accurate predictive computational tools are essential for practical design, control and optimization of hydrogen engines. To serve for this broader purpose, a computational model, which has been widely used for gasoline and diesel engines, is investigated for its capability to simulate hydrogen engines. Specifically, fuel-specific sub-models are first incorporated by properly accounting for hydrogen’s distinct properties such as flame speed and burn rate. The accuracy of the model is then assessed by validating it in comparison to independent experimental data. Finally, it is utilized to quantify the environmental impact of exhaust gas recirculation. With these improvements, the present predictive model is shown to capture the measured engine performance and emission data well under different operating conditions. In particular, the variations of peak in-cylinder pressure, heat release rate, brake power, brake thermal efficiency, exhaust temperature, and NOx emissions are predicted close to the measured values. With the addition of a proportional-integral-derivative controller to the engine model, exhaust gas recirculation level is varied, resulting in nearly an order of magnitude reduction in NOx emissions during the present simulations.  相似文献   

8.
The effects of hydrogen ratios on combustion and emission characteristics of gasoline engine were studied under different exhaust gas recirculation (EGR), ignition timing and ignition pressure. The test performed in a modified gasoline direct ignition engine at different hydrogen ratios of 0%, 5%, 10% and 25%. In addition, the EGR rate set to 0%, 5%, 10% and 20% to study the combustion and emission characteristics. Addition to the different hydrogen fractions, 5% of TiO2 is added to increase the combustion characteristics with reduced emission. Regarding the results of the current study, the engine torque increases by 15% due to the addition of hydrogen in gasoline, while mechanical efficiency is improved by achieving a large throttle opening. At the same time, NOx emission decreased by 62% compared to the unmodified engine due to the influence of EGR, hydrogen ratio and high oxygen concentration TiO2. Moreover, the emission of CO and HC also reduced due to the influence of hydrogen fuel. Additionally, few more tests are taken to monitor the effect of the injection pressure for the hydrogen fuel. Higher injection reports higher effective thermal efficiency at 4 MPa and lower NOx. Reasonable injection pressure results in shorten flame development period.  相似文献   

9.
Through experiments conducted on a single cylinder direct injection (DI) diesel engine, effects of exhaust gas recirculatoin (EGR) on combustion and emission during cold start were investigated. Combustion of first firing cycle can be promoted significantly by introducing EGR. In experiments, when partially closed choking valve and partially or fully opened EGR valve, peak cylinder pressure of first firing cycle was about 45% higher than that under normal condition without EGR, and the start of combustion (SOC) was also much earlier. EGR also had effects on combustion stability. In the case, which kept 50% or 100% opening of EGR valve (OEV) and kept 100% opening of choking valve (OCV), more stable combustion process was achieved when common rail pressure decreased during cold start. However, excessive amount of EGR led to extreme unstable combustion and even misfiring. Opacity and NO emissions were also analyzed in detail. In the case with maximum EGR, the lowest average opacity, which was less than 4%, was achieved during initial several firing cycles of cold start. But in the later phase, excessive amount of EGR led to a great deal of white smoke emission. NO emission during initial phase of cold start is mainly affected by increase in fuel amount of injection. When combustion became stable gradually, EGR showed significant effect on NO reduction.  相似文献   

10.
DI diesel engines are well established today as the main powertrain solution for trucks and other relevant heavy duty vehicles. At the same time emission legislation (mainly for NOx and particulate matter) becomes stricter, reducing their limit to extremely low values. One efficient method to control NOx in order to achieve future emissions limits is the use of rather high exhaust gas recirculation (EGR) rates accompanied by increased boost pressure to avoid the negative impact on soot emissions. The method is based on the reduction of gas temperature level and O2 availability inside the combustion chamber, but unfortunately it has usually an adverse effect on soot emissions and brake specific fuel consumption (bsfc). The use of high EGR rates creates the need for EGR gas cooling in order to minimize its negative impact on soot emissions especially at high engine load were the EGR flow rate and exhaust temperature are high. For this reason in the present paper it is examined, using a multi-zone combustion model, the effect of cooled EGR gas temperature level for various EGR percentages on performance and emissions of a turbocharged DI heavy duty diesel engine operating at full load. Results reveal that the decrease of EGR gas temperature has a positive effect on bsfc, soot (lower values) while it has only a small positive effect on NO. As revealed, the effect of low EGR temperature is stronger at high EGR rates.  相似文献   

11.
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC), in which with an optimal combination of hydrogen injection timing and controlled jet geometry, the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss, which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further, PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study, the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.  相似文献   

12.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

13.
基于一台带有低压废气再循环系统的1.5 L涡轮增压直喷汽油发动机进行了稀燃和废气再循环(EGR)影响发动机燃烧性能的试验研究。结果表明,随着稀释率的上升,EGR和稀燃均导致发动机滞燃期、燃烧持续期延长,燃烧重心提前,有效燃油消耗率下降,排气温度下降,平均绝热指数上升。相同稀释率下,相比稀燃,EGR的滞燃期长,燃烧重心提前,两者燃烧持续期基本相等,稀释极限低,绝热指数小,排气温度低。在稀释率分别为20%、35.9%时,最大可减小有效燃油消耗率4.7%、7.2%。热容对燃油经济性的影响占主导地位,相同稀释率下,循环变动系数小于3%时,相比稀燃,EGR具有更好的燃油经济性。  相似文献   

14.
15.
Two dilution strategies, exhaust gas recirculation (EGR) with a stoichiometric mixture and excess air with a lean mixture, were investigated for an 11 L, 6-cylinder H2-blended compressed natural gas (HCNG) engine. The engine was operated at 1260 rpm and 50% of maximum engine load (575 Nm) at maximum brake torque for each strategy. To evaluate the EGR approach, the stoichiometric combustion mode was varied, and to evaluate the lean combustion mode, the excess air ratio was varied. The maximum EGR rate and lean flammability limit were constrained by the combustion stability. The dilution rate was employed to compare the dilution effect on engine performance and emission levels under identical levels of the dilution for both combustion modes. The thermal efficiencies under stoichiometric combustion with EGR were lower than those under lean combustion, owing to a higher pumping loss and a lower combustion speed. The total hydrocarbon emissions under the lean combustion mode were lower than those under the stoichiometric combustion mode only when the combustion speed was relatively slow, due to the higher mixing rate caused by the active combustion. As the dilution rate was increased in the lean combustion mode, the rate of decrease in NOx emissions slowed compared to the stoichiometric combustion mode. The lowest level of engine-out NOx emissions was observed under lean combustion.  相似文献   

16.
The cycle variation characteristics of a port fuel injection hydrogen internal combustion engine (PFI-HICE) have been extensively investigated. The covariance of indicated mean effective pressure (COVimep) is the best parameter for evaluating the cycle variations in the PFI-HICE. COVimep decreases as fuel–air ratio increases from 1000 to 5500 rpm, and engine speed minimally affects COVimep. The effect of ignition advance angle on COVimep is determined by fuel–air ratio. The ignition advance angles that correspond to the minimum COVimep of the PFI-HICE decrease as fuel–air ratio increases. The effect of ignition advance angle on COVimep diminishes as fuel–air ratio increases. The COVimep of the PFI-HICE rapidly decreases as throttle increases when the throttle is less than 20%. Injection timing only slightly affects COVimep under high-speed conditions, and COVimep increases when hydrogen is injected in intake periods under low-speed conditions. These results indicate that studying COVimep improves the stability of PFI-HICEs.  相似文献   

17.
Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production and is used on most modern high-speed direct injection (HSDI) diesel engines. However EGR has different effects on combustion and emissions production that are difficult to distinguish (increase of intake temperature, delay of rate of heat release (ROHR), decrease of peak heat release, decrease in O2 concentration (and thus of global air/fuel ratio (AFR)) and flame temperature, increase of lift-off length, etc.), and thus the influence of EGR on NOx and particulate matter (PM) emissions is not perfectly understood, especially under high EGR rates. An experimental study has been conducted on a 2.0 l HSDI automotive diesel engine under low-load and part load conditions in order to distinguish and quantify some effects of EGR on combustion and NOx/PM emissions. The increase of inlet temperature with EGR has contrary effects on combustion and emissions, thus sometimes giving opposite tendencies as traditionally observed, as, for example, the reduction of NOx emissions with increased inlet temperature. For a purely diffusion combustion the ROHR is unchanged when the AFR is maintained when changing in-cylinder ambient gas properties (temperature or EGR rate). At low-load conditions, use of high EGR rates at constant boost pressure is a way to drastically reduce NOx and PM emissions but with an increase of brake-specific fuel consumption (BSFC) and other emissions (CO and hydrocarbon), whereas EGR at constant AFR may drastically reduce NOx emissions without important penalty on BSFC and soot emissions but is limited by the turbocharging system.  相似文献   

18.
This paper aims to evaluate part-load operation of a natural gas combined cycle (NGCC) power plant with exhaust gas recirculation (EGR) and a CO2 capture plant. Several studies have demonstrated the feasibility and the advantages of EGR at full load, but operation at part load is also important because it is a common condition when NGCC power plants are being used as backup for renewables. The results of this study show that the number of absorber trains is reduced from 4 to 3 with EGR. The efficiency of the NGCC plant with EGR was 0.5% points higher than a conventional NGCC at full load as a result of a higher CO2 concentration in the flue gas. However, this efficiency advantage decreased as the load was reduced from 100% to 50%, with both cases presenting the same efficiency at 50% load. This means that there was no benefit from the effect of EGR at lower loads. The efficiency of a NGCC plant with EGR and CO2 capture configuration decreased from 52.6% to 45.9% when the load was reduced from 100% to 50% compared with a conventional NGCC where the efficiency changed from 52.1% to 45.9%. It was concluded that a NGCC plant with EGR and CO2 capture is viable, results in lower capital costs due to the smaller number of absorber trains and yields slightly higher efficiencies, for operation at part-load down to 50%.  相似文献   

19.
Hydrogen (H2), being carbon free energy carrier, is best suitable for compression ignition (CI) engines with better performance and lower carbon derived emissions. Novelty of present study is the employment of low-cost catalyst (alumina) for production of H2 reformate (hydrogen rich exhaust gas recirculation: H2EGR) in an indigenous catalytic reactor. Experimental tests were carried out on a CI engine under three conditions; base diesel, exhaust gas recirculation (EGR), and H2EGR. Results indicated that brake thermal efficiency of the engine with H2EGR was higher than EGR and comparable with base diesel operation. All carbon-based emissions including smoke emission decreased significantly with H2EGR than diesel and EGR operations. In addition, oxides of nitrogen emission (NOx) also decreased by about 46% with H2EGR than base diesel operation. It is concluded that H2EGR is a promising option for CI engines for simultaneous reduction of both NOx and smoke emissions along with the additional benefit of higher efficiency.  相似文献   

20.
In order to improve the limitation of evaluating the abnormal combustion problem of hydrogen internal combustion engine by single index, the abnormal combustion risk coefficient is proposed and defined based on AHP(Analytic Hierarchy Process)-entropy method. The abnormal combustion risk of PFI hydrogen internal combustion engine is comprehensively evaluated from multiple indexes such as the uniformity coefficient of the mixture, the temperature of the hot area, the maximum temperature rise rate, the residual amount of hydrogen in the intake port and the cylinder temperature at the end of the exhaust. The influence of hydrogen injection parameters on abnormal combustion was explored. The results show that the temperature and the maximum temperature rise rate in the hot area decrease first and then increase with the increase of hydrogen injection angle and hydrogen injection flow rate. Although large hydrogen injection angle and hydrogen injection flow rate can reduce the cylinder temperature at the end of exhaust, they will increase the residual hydrogen amount in the intake port. Appropriate hydrogen injection angle and hydrogen injection flow scheme can ensure that all parameters are at a better level, so that the risk coefficient of abnormal combustion decreases by 2.1%–5.5%, and the possibility of abnormal combustion is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号