首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm−2 Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm−2 for NaBH4/O2 fuel cell at 60 °C, 665 mW cm−2 for NaBH4/H2O2 fuel cell at 60 °C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded.  相似文献   

2.
Two gas diffusion layers based on the same carbon cloth substrate, produced by an Italian Company (SAATI), and coated with microporous layers of different hydrophobicities, were assembled in a polymer electrolyte membrane fuel cell and its performances assessed. For comparison the cell mounting the carbon cloth without microporous layer was also tested. The membrane electrode assembly was made of Nafion® 212 with Pt load 0.3/0.6 mg cm−2 (anode/cathode). The cell testing was run at 60 °C and 80 °C with fully humidified air (100%RH) and 80%RH hydrogen feedings. The assembly of gas diffusion layers and membrane with electrodes was compressed to 30% and 50% of its initial thickness. For each configuration polarization and power curves were recorded; in order to evaluate the role of different GDLs, AC impedance spectroscopy of the running cell was also performed.The higher compression ratio caused the worsening of cell performances, partially mitigated when the operating temperature was raised to 80 °C. The presence of the microporous layer onto the carbon cloth resulted extremely beneficial for the operations especially at high current density; moreover, it sensibly reduces the high frequency resistance of the overall assembly.  相似文献   

3.
This study uses fuel cell gas diffusion layers (GDLs) made from carbon fiber paper containing carbon black in proton exchange membrane fuel cells (PEMFCs) in order to determine the relationship between carbon black content and fuel cell performance. The connection between fuel cell performance and the carbon black content of the carbon fiber paper is discussed, and the effects of carbon black on the carbon fiber paper's thickness, density, and surface resistivity are investigated. When a carbon fiber paper GDL contains 10 wt% phenolic resin and 2% carbon black, and reaction area was 25 cm2 and operating temperature 40 °C, tests show that a carbon electrode fuel cell could achieve 1026.4 mA cm−2 and maximum power of 612.8 mW cm−2 under a 0.5 V load.  相似文献   

4.
The performance of polymer electrolyte membrane fuel cells fabricated with different catalyst loadings (20, 40 and 60 wt.% on a carbon support) was examined. The membrane electrode assembly (MEA) of the catalyst coated membrane (CCM) type was fabricated without a hot-pressing process using a spray coating method with a Pt loading of 0.2 mg cm−2. The surface was examined using scanning electron microscopy. The catalysts with different loadings were characterized by X-ray diffraction and cyclic voltammetry. The single cell performance with the fabricated MEAs was evaluated and electrochemical impedance spectroscopy was used to characterize the fuel cell. The best performance of 742 mA cm−2 at a cell voltage of 0.6 V was obtained using 40 wt.% Pt/C in both the anode and cathode.  相似文献   

5.
The electrochemical performance of LSM-Pd composite material as current collector of SOFC cathode is studied on (La0.8Sr0.2)0.9MnO3 (LSM90) cathode. The influence of Pd content on contact resistance is investigated. The investigation shows that the contact resistance of LSM-Pd is about 20 mΩ cm2 at 750 °C when the composite contains 8 wt% Pd, and it could be comparable to pure Pt. The ohmic resistance of a single cell using LSM-Pd composite is about 255 mΩ cm2 that contains 4 wt% Pd as current collector, this value is close to that of a cell using expensive Pt paste as current collector.  相似文献   

6.
The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm−2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm−2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg−1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.  相似文献   

7.
La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powder was prepared by glycine–nitrate combustion method. The electrochemical properties of porous LSCF cathodes and LSCF–Gd0.1Ce0.9O1.95 (GDC) composite cathodes were evaluated at intermediate/low temperatures of 500–700 °C. The polarization resistance of pure LSCF cathode sintered at 975 °C for 2 h was 1.20 Ω cm2 at 600 °C. The good performance of pure LSCF cathode is attributed to its unique microstructure—small grain size, high porosity and large surface area. The addition of GDC to LSCF cathode further reduced the polarization resistance. The lowest polarization resistance of 0.17 Ω cm2 was achieved at 600 °C for LSCF–GDC (40:60 wt%) composite cathode. An anode-supported solid oxide fuel cell (SOFC) was prepared using LSCF–GDC (40:60 wt%) composite as cathode, GDC film (49-μm-thick) as electrolyte, and Ni–GDC (65:35 wt%) as anode. The total electrode polarization resistance was 0.27 Ω cm2 at 600 °C, which implies that LSCF–GDC (40:60 wt%) composite cathode used in the anode-supported SOFC had a polarization resistance lower than 0.27 Ω cm2 at 600 °C. The cell generated good performance with the maximum power density of 562, 422, 257 and 139 mW/cm2 at 650, 600, 550 and 500 °C, respectively.  相似文献   

8.
Hydroxyl-ion conductive poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes with different characteristics were prepared via relatively simple bromination/amination serial reactions with reduced number of involved chemicals and shorter reaction time. The effects of reactants ratio, reaction atmosphere, polymer concentration, casting solvent, and hydroxylation treatment on reaction were investigated in details. The microstructure, water uptake, swelling ratio, ion-exchange capacity and ionic conductivity of the membranes were also studied. The obtained results demonstrate that, the ionic conductivity of the membrane is dependent on casting solvent. The N-methyl-2-pyrrolidonecast membrane exhibits the highest conductivity with the thinnest film. Although the membrane was prepared via a relatively simple preparation route with least toxic chemicals, a competitive ionic conductivity value of 1.64 × 10−2 S cm−1 was achieved at 60 °C. A power density of 19.5 mW cm−2 has been demonstrated from the alkaline membrane fuel cell operated at 70 °C, assembled from the entirely homemade membrane electrode assembly without any hot-pressing.  相似文献   

9.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30–40 °C) and high temperatures (100–120 °C). DMFC power densities were about 140 mW cm−2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm−2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm−2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.  相似文献   

10.
Multi-walled carbon nanotubes (MWCNTs) based micro-porous layer on the carbon paper substrates was prepared by in situ growth in a chemical vapor deposition setup. Platinum nanoparticles were deposited on in situ grown MWCNTs/carbon paper by a wet chemistry route at <100 °C. The in situ MWCNTs/carbon paper was initially surface modified by silane derivative to incorporate sulfonic acid–silicate intermediate groups which act as anchors for metal ions. Platinum nanoparticles deposition on the in situ MWCNTs/carbon paper was carried out by reducing platinum (II) acetylacetonate precursor using glacial acetic acid. High resolution TEM images showed that the platinum particles are homogeneously distributed on the outer surface of MWCNTs with a size range of 1–2 nm. The Pt/MWCNTs/carbon paper electrode with a loading of 0.3 and 0.5 mg Pt cm−2 was evaluated in proton exchange membrane single cell fuel cell using H2/O2. The single cells exhibited a peak power density of 600 and 800 mW cm−2 with catalyst loadings of 0.3 and 0.5 mg Pt cm−2, respectively with H2/O2 at 80 °C, using Nafion-212 electrolyte. In order to understand the intrinsically higher fuel cell performance, the electrochemically active surface area was estimated by the cyclic voltammetry of the Pt/MWCNTs/carbon paper.  相似文献   

11.
Pseudo-capacitance of composite materials where ruthenium oxide particles are loaded on activated carbon has been evaluated in the electrolyte of 1-ethyl-3-methyl imidazolium tetrafluoroborate dissolved in acetonitrile. The composite materials prepared by conventional a sol-gel method have dispersed structure of ruthenium oxide particle of tens nanometer diameter on the surface of activated carbon. The extent of the pseudo-capacitance of the composite electrodes in the imidazolium salt electrolyte, estimated by the comparison of the capacitance per surface area of electrode in different non-aqueous electrolyte, is ca. 3-5 μF cm−2 in addition to the double-layer capacitance of ca. 6 μF cm−2, depending on the loading status of ruthenium oxide. The symmetric cell consisting of the composite electrode containing 18 wt% of ruthenium oxide and the imidazolium salt electrolyte provides cell capacitance based on the pseudo-capacitance by a constant-current test.  相似文献   

12.
Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H2SO4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm−1 than Chs membranes of 204 s cm−1. The proton fluxes across the membranes were 2.73 mol cm−2 s−1 for Chs- and 1.12 mol cm−2 s−1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10−6 cm2 s−1 for Chs membranes and 3.9 × 10−6 cm2 s−1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm−2 was 2.7 times higher than in the case of Chs MEA.  相似文献   

13.
The present research is aimed to study the oxygen reduction reaction (ORR) on a PdCu electrocatalyst synthesized through reduction of PdCl2 and CuCl with NaBH4 in a THF solution. Characterization of PdCu electrocatalyst was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Characterization results showed that the synthesis method produced spherical agglomerated nanocrystalline PdCu particles of about 10 nm size. The electrochemical activity was evaluated using cyclic voltammetry (CV), rotating disc electrode (RDE) and electrochemical impedance spectroscopy (EIS) in a 0.5 M H2SO4 electrolyte at 25 °C. The onset potential for ORR on PdCu is shifted by ca. 30 mV to more positive values and enhanced catalytic current densities were observed, compared to that of pure Pd catalyst. The synthesized PdCu electrocatalyst dispersed on a carbon black support was tested as cathode electrode in a membrane-electrode assembly (MEA) achieving a power density of 150 mW cm−2 at 0.38 V and 80 °C.  相似文献   

14.
The addition of Ir-based water electrolysis catalysts to the catalyst layer in polymer electrolyte membrane fuel cells was examined as a promising approach for preventing electrochemical carbon corrosion under severely corrosive conditions. Electrochemical carbon corrosion of membrane electrode assemblies containing different amounts of IrO2 or shape-controlled Ir dendrite catalysts were characterized using on-line mass spectrometry. In particular, Ir dendrite catalysts possess high activity toward oxygen evolution reactions when compared to IrO2. As a result, Ir dendrites provided a very effective method of removing water from the catalyst layer. Therefore, the addition of 1 wt% Ir dendrite (0.008 mg cm−2) to the catalyst layer of the cathode decreased electrochemical carbon corrosion by 84% at 1.6 VNHE compared with a conventional membrane electrode assembly in the absence of water electrolysis catalysts.  相似文献   

15.
The performance of PrBaCo2O5+δ + Sm0.2Ce0.8O1.9 (PrBC + SDC) composites as electrodes of intermediate-temperature solid oxide fuel cells is investigated. The effects of SDC content on the performance and properties of the electrodes, including thermal expansion, DC conductivity, oxygen desorption, area specific resistance (ASR) and cathodic overpotential are evaluated. The thermal expansion coefficient and electrical conductivity of the electrode decreases with an increase in SDC content. However, the electrical conductivity of a composite electrode containing 50 wt% SDC reaches 150 S cm−1 at 600 °C. Among the various electrodes under investigation, an electrode containing 30 wt% SDC exhibits superior electrochemical performance. A peak power density of approximately 1150 and 573 mW cm−2 is reached at 650 and 550 °C, respectively, for an anode-supported thin-film SDC electrolyte cell with the optimal composite electrode. The improved performance of a composite electrode containing 70 wt% PrBC and 30 wt% SDC is attributed to a reduction in the diffusion path of oxygen-ions within the electrode, which is a result of a three-dimensional oxygen-ion diffusion path in SDC and a one-dimensional diffusion path in PrBC.  相似文献   

16.
Carbon-filled epoxy composites are developed for potential application as bipolar plates in proton exchange membrane (PEM) fuel cells. These composites are prepared by solution intercalation mixing, followed by compression molding and curing. Electrical conductivity, thermal and mechanical properties, and hygrothermal characteristics are determined as function of carbon-filler content. Expanded graphite and carbon black are used as synergistic combination to obtain desired in-plane and through-plane conductivities. These composites show high glass transition temperatures (Tg ∼ 180 °C), high thermal degradation temperatures (T2 ∼ 415 °C), in-plane conductivity of 200–500 S cm−1 with 50 wt% carbon fillers, in addition to offering high values of flexural modulus, flexural strength, and impact strength, respectively 2 × 104 MPa, 72 MPa, and 173 J m−1. The presence of carbon fillers helps reduce water uptake from 4 to 5 wt% for unfilled epoxy resins to 1–2 wt%. In addition, morphology, electrical, mechanical, and thermal properties remain unchanged on exposure to boiling water and acid reflux. This data indicate that the composites developed in this work meet many attributes of bipolar plates for use in PEM fuel cells.  相似文献   

17.
In order to understand the origin of performance variations in polymer electrolyte membrane fuel cells (PEMFCs), a series of membrane-electrode assemblies (MEAs) with identical electrode layer compositions were prepared using different electrode curing conditions, their performances were evaluated, and their morphologies determined by scanning electron microscopy (SEM). The polarization curves varied markedly primarily due to differences in morphologies of electrodes, which were dictated by the curing processes. The highest performing MEAs (1.46 W cm−2 peak power density at 3.2 A cm−2 and 80 °C) were prepared using a slow curing process at a lower temperature, whereas those MEAs prepared using a faster curing process performed poorly (0.1948 W cm−2 peak power density at 440 mA cm−2 and 80 °C). The slowly cured MEAs showed uniform electrode catalyst and ionomer distributions, as revealed in SEM images and elemental maps. The relatively faster cured materials exhibited uneven distribution of ionomer with significant catalyst clustering. Collectively, these results indicate that to achieve optimal performance, factors that affect the dynamics of the curing process, such as rate of solvent evaporation, must be carefully controlled to avoid solvent trapping, minimize catalyst coagulation, and promote even distribution of ionomer.  相似文献   

18.
Urchin-like structured carbon comprising carbon nanotubes grown on Fe catalyst-seeded mesoporous carbon have shown promising results as catalyst supports for use in direct methanol fuel cells (DMFCs) and proton exchange membrane fuel cells (PEMFCs). The Fe catalyst is prepared on the mesoporous carbon by immersion process followed by a high temperature reduction. The growth of carbon nanotubes then progress, for a predetermined time, through the thermal decomposition of acetylene at 800 °C. The resulting structure, comprising intimately connected mesoporous carbon and carbon nanotubes, is shown to offer performance advantages as a catalytic support for DMFCs and PEMFCs. When the hot-pressing pressure is fixed 20 kg cm−2 to fabricate a membrane electrode assembly (MEA) with urchin-like carbon supports, the CNT growth time is found to be 60 min for a highest maximum power density in both DMFCs and PEMFCs. The maximum power densities are 43 and 79% higher than those with purely mesoporous carbon in DMFCs and PEMFCs, respectively. In a direct comparison with commercial E-TEK catalyst, the urchin-like catalyst shows higher maximum power densities, in DMFC and PEMFC, by approximately 17 and 31%, respectively.  相似文献   

19.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

20.
The two different molecular weight hyperbranched polymers (HBP(L)-PA-Ac and HBP(H)-PA-Ac) with both phosphonic acid group as a functional group and acryloyl group as a cross-linker at the chain ends were successfully synthesized as a new thermally stable proton-conducting electrolyte. The cross-linked electrolyte membranes (CL-HBP-PA) were prepared by their thermal polymerizations using benzoyl peroxide and their ionic conductivities under dry condition and thermal properties were investigated. The ionic conductivities of the low molecular weight CL-HBP(L)-PA membrane and the high molecular weight CL-HBP(H)-PA membrane were found to be 1.2 × 10−5 and 2.6 × 10−6 S cm−1, respectively, at 150 °C under dry condition, and showed the Vogel–Tamman–Fulcher (VTF) type temperature dependence. Both membranes were thermally stable up to 300 °C, and they had suitable thermal stability as electrolyte membranes for the high-temperature fuel cells under dry condition. Fuel cell measurements using a single membrane electrode assembly cell with both cross-linked membranes were successfully performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号