首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feasibility of scaling up the production of a Mg-based hydride as material for solid state hydrogen storage is demonstrated in the present work. Magnesium hydride, added with a Zr–Ni alloy as catalyst, was treated in an attritor-type ball mill, suitable to process a quantity of 0.5–1 kg of material. SEM–EDS examination showed that after milling the catalyst was well distributed among the magnesium hydride crystallites. Thermodynamic and kinetic properties determined by a Sievert's type apparatus showed that the semi-industrial product kept the main properties of the material prepared at the laboratory scale. The maximum amount of stored hydrogen reached values between 5.3 and 5.6 wt% and the hydriding and dehydriding times were of the order of few minutes at about 300 °C.  相似文献   

2.
The desorption behavior of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a PEM fuel cell and being charged directly from a low pressure water electrolyzer without need of additional compression, was studied. The nominal 70 L hydrogen storage capacity of the container (T = 20 °C, P = 101.3 kPa) suffices for ca. 2.5 h operation of a 50 W hydrogen/oxygen fuel cell stack. The hydride container is provided with aluminum extended surfaces to enhance heat exchange with the surrounding medium. These surfaces consist of internal disk-shaped metal foils and external axial fins. The characterization of the storage prototype at different hydrogen discharge flow rates was made by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container.  相似文献   

3.
The quaternary aluminum hydride LiMg(AlH4)3 contains 9.7 wt% hydrogen, of which 7.2 wt% can be released in a two-step decomposition reaction via first formation of LiMgAlH6 and then the binary hydrides MgH2 and LiH. In-situ synchrotron radiation powder X-ray diffraction and thermal desorption spectroscopy measurements were performed to analyze the product distributions formed during the thermal decomposition of LiMg(AlD4)3. The first decomposition step occurs at about 120 °C and the second at about 160 °C for the as-milled sample, while for a purified sample of LiMg(AlD4)3, the decomposition temperatures involving release of hydrogen increase to 140 and 190 °C, respectively, suggesting that pure samples of LiMg(AlD4)3 are kinetically stabilized. Studies of the purified LiMg(AlD4)3 also showed that the second decomposition step can be divided into two reactions: 3LiMgAlD6 → Li3AlD6 + 3MgD2 + 2Al + 3D2 and Li3AlD6 → 3LiD + Al + 3/2D2. Addition of TiCl3 to LiMg(AlD4)3 under a variety of ball milling conditions consistently led to decomposition of LiMg(AlD4)3 during milling. Correspondingly, all attempts to rehydrogenate the (completely or partially) decomposed samples at up to 200 bar hydrogen pressure failed. Decomposition of MgD2 was observed at relatively low temperatures. This is ascribed to thermodynamic destabilization due to the formation of different AlxMgy phases, and to kinetic destabilization by addition of TiCl3. A thermodynamic assessment was established for the calculation of phase stability and decomposition reaction relationships within the Li-Mg-Al−H system. The calculations confirmed the metastability of the LiMg(AlH4)3 phase and the irreversibility of the Li-Mg alanate phase decomposition reactions. The Li-Mg alanate decomposition pathways followed experimentally could be explained by the endothermicity of the calculated decomposition enthalpies, in that an impure or catalyzed LiMgAlH6 intermediate phase could more directly access an endothermic decomposition reaction at lower temperatures, while a kinetically-hindered, purified LiMgAlH6 would require higher temperatures to initiate the two-step decomposition through an exothermic reaction.  相似文献   

4.
We have been performing research on the Totalized Hydrogen Energy Utilization System (THEUS) which has applications to commercial buildings and a planned added function of supplying energy to stations for hydrogen and electric vehicles. In that case we will utilize liquid hydrogen transported from a hydrogen station and all Boil-Off Gas (BOG) will be recovered in THEUS’s metal hydride tanks. It is known that BOG is chiefly composed of para-hydrogen, which has different thermo-physical properties from normal hydrogen. It has been reported that some metal hydride alloys work as a catalyst to accelerate the para-ortho conversion and the conversion proceeds relatively fast in the case of La–Ni5. The conversion is considered to be an endothermic reaction. A misch metal (Mm)-Ni5 metal hydride alloy, which contained La and Ni, was used in our THEUS metal hydride tank. To examine the effect of the para-ortho conversion on the THEUS operation, we investigated the absorption/desorption characteristics of the metal hydride tank with BOG. We confirmed that the effect of the heat of conversion was very small and BOG could be treated as normal hydrogen for practical application.  相似文献   

5.
This study is a continuation of the computational analysis of the reactor equipped with hexagonal honeycomb based heat transfer enhancements, performed in Part A of the study. In the present study, the performance of the metal alloy and the reactor is investigated experimentally. The gravimetric capacity and reaction kinetics of the alloy La0.9Ce0.1Ni5 are determined. The performance of the reactor under different external environments is noted. The influence of operating conditions such as supply pressure, heat transfer fluid, heat transfer fluid temperature on the reactor performance is investigated. Evaporative cooling as a heat removal technique for metal hydride based hydrogen storage reactors is tested for the first time and compared to conventional heat removal methods. It is found to improve the heat transfer from the alloy bed significantly.  相似文献   

6.
7.
This work performs the simulation of hydrogen desorption processes with Mg2Ni hydrogen storage alloy to investigate the canister designs. Reaction rates and equilibrium pressures of Mg2Ni alloy were calculated by fitting experimental data in literature using least squares regression. The obtained reaction kinetics was used to model the thermalfluid behavior of hydrogen desorption. Since the alloy powders will expand and shrink during the absorption and desorption cycle, the canisters considered are comprised of expansion volume atop the metal bed. In order to enhance the heat transfer performance of the canister, an air pipe is equipped at the canister centre line with/without internal fins. Detailed equations that describe the force convection of the heat exchange pipe and the natural convection at the reactor wall are carefully incorporated in the model. Simulation results show that the bare cylindrical canister can not complete the desorption process in 2.8 h, while the canister equipped with the concentric heat exchanger pipe and fins can complete desorption within 1.7 h.Results also demonstrate that the reaction rates can be further increased by increasing the pipe flow velocity and/or increasing the fin volume.  相似文献   

8.
A novel method to improve the hydrogen absorption rate in a metal hydride tank is proposed by introducing physical mixing of the metal hydride powder to promote heat removal and accelerate the kinetics of the hydriding process. Experiments were conducted with and without mixing to demonstrate that the hydrogen absorption rate can be improved significantly by mixing. Mixing was achieved by tilting the cylindrical metal hydride tank back and forth by 90° during charging. A mathematical model was also developed to simulate the effects of physical mixing. The model results indicate that physical mixing enhances heat transfer by redistributing the hydride powder from the hot core to the boundary and facilitates heat removal by convection at the tank walls. After validating the model against experimental results, the effect of physical mixing on accelerating hydrogen storage was explored by changing the mixing rate and the convection coefficient at the tank wall, and by increasing the thermal conductivity of the hydride bed by adding aluminum foam. It was found that while higher mixing rates generally improve the absorption rate, the benefits of mixing are reduced for higher convection coefficients, and for higher weight fractions of Al foam. Simulations were also conducted with and without mixing as a function of tank size. The results show that the benefit of physical mixing increases with tank size.  相似文献   

9.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

10.
The hydrogen absorption properties of LaNi4.8T0.2 (T = Mg, Bi and Sb) alloys are reported. The effects of the substitution of Ni in the LaNi5 compound with Mg, Bi and Sb are investigated. The ability of alloys to absorb hydrogen is characterized by the pressure–composition (pc) isotherms. The pc isotherms allow the determining thermodynamic parameters enthalpy (ΔHdes) and entropy (ΔSdes) of the dehydrogenation processes. The calculated ΔHdes and ΔSdes data helps to explain the decrease of hydrogen equilibrium pressure in alloys doped with Al, Mg and Bi and its increase in the Sb-doped LaNi5 compound. Generally, partial substitution of Ni in LaNi5 compound with Mg, Bi and Sb cause insignificant changes of hydrogen storage capacity compared to the hydrogen content in the initial LaNi5H6 hydride phase. However, it is worth to stress that, in the case of LaNi4.8Bi0.2, a small increase of H/f.u. up to 6.8 is observed. The obtained results in these investigations indicate that the LaNi4.8T0.2 (T = Al, Mg and Bi) alloys can be very attractive materials dedicated for negative electrodes in Ni/MH batteries.  相似文献   

11.
12.
Metal hydride (MH) hydrogen storage is used in both mobile and stationary applications. MH tanks can connect directly to high-pressure electrolyzers for on-demand charging, saving compression costs. To prevent high hydrogen pressure during charging, hydrogen generation needs to be controlled with consideration for unknown disturbances and time-varying dynamics. This work presents a robust control system to determine the appropriate mass flow rate of hydrogen, which the water electrolyzer should produce, to maintain the gaseous hydrogen pressure in the tank for the hydriding reaction. A control-oriented model is developed for MH hydrogen storage for control system design purposes. A proportional-integral (PI) and an active disturbance rejection control (ADRC) feedback controllers are investigated, and their performance is compared. Simulation results show that both the PI and ADRC controllers can reject both noises from the output measurements and unknown disturbances associated with the heat exchanger. ADRC excels in eliminating disturbances produced by the input mass flow rate, maintaining the pressure of the tank at the charging pressure with little oscillations. Additionally, the parameters estimated by the ADRC's extended state observer was used to predict the state-of-charge (SOC) of the MH.  相似文献   

13.
An optimized design for a 210 kg alloy, TiMn alloy based hydrogen storage system for stationary application is presented. A majority of the studies on metal hydride hydrogen systems reported in literature are based on system scale less than 10 kg, leaving questions on the design and performance of large-scale systems unanswered. On the basis of sensitivity to various design and operating parameters such as thermal conductivity, porosity, heat transfer coefficient etc., a comprehensive design methodology is suggested. Following a series of performance analyses, a multi-tubular shell and tube type storage system is selected for the present application which completes the absorption process in 900 s and the desorption process in 2000 s at a system gravimetric capacity of 0.7% which is a vast improvement over similar studies. The study also indicates that after fifty percent reaction completion, heat transfer ceases to be the major controlling factor in the reaction. This could help prevent over-designing systems on the basis of heat transfer, and ensure optimum system weight.  相似文献   

14.
In this study, the effects of partial substitution of Fe, in the ZrFe2-system alloys, by Cr or V are presented. The two studied alloys, ZrFe1.8V0.2 and ZrFe1.8Cr0.2, have been synthesized by high frequency induction-levitation melting under inert Ar atmosphere. The induction furnace was equipped with a water-cooled copper crucible that permits the rapid solidification of the alloy after the melting. The crystal structures of the investigated alloys have been studied by the Rietveld analysis of the obtained X-ray diffraction (XRD) patterns. The microstructure has been observed by a scanning electron microscope (SEM) on polished samples of the alloys. Their hydriding properties have been studied with a high pressure Sievert's type apparatus, up to 200 bar. All pressure–composition–temperature (PCT) measurements have been obtained at 20, 60 and 90 °C. Two high temperature activation cycles have been conducted prior to PCT measurements. The results showed almost the same uptake for the alloys after identical activation and lowering of the plateau pressure in both cases.  相似文献   

15.
Mg–Ni multilayers and Ni-rich Mg thin films were deposited by electron gun and pulsed laser deposition, respectively. Samples were submitted to thermal treatment in deuterium or hydrogen atmosphere at 423 K and 105 Pa pressure to promote the metal to hydride phase transition.The H chemical bonding in the multilayer samples, after annealing in H2 atmosphere, was examined by Fourier transform infrared spectroscopy: the obtained spectra suggest that the samples with the Mg:Ni=2:1 atomic ratio contain the Mg2NiH4 phase while the samples with lower Ni concentration contain both the MgH2 and the Mg2NiH4 phases.The effect of the Ni additive on the stability of the deuteride phase was studied by thermal desorption spectroscopy (TDS). The TDS spectra of the single-phase Mg2NiD4 samples show a TDS peak at 400 K. The TDS spectra of the two-phase samples show both the D2 desorption peak at 400 K and a second peak at higher temperature that we attributed to the dissociation of the MgD2 phase. The high-temperature peak shifts to lower temperatures by increasing the Ni content.It is suggested that in the two-phase samples, the lattice volumes having the Mg2Ni structure resulting from the dissociation of the Mg2NiD4 phase reduce the thermodynamic stability of the MgD2 phase.  相似文献   

16.
Recently calcium hydride has attracted attention as a possible component in ternary complex hydrides such as Ca(AlH4)2, Ca2SiHx and quaternary complex hydrides of the type Li–B–Ca–H. Although in bulk form CaH2 decomposes reversibly above 600° centigrade we were motivated to see whether calcium hydride in cluster form has properties suitable for hydrogen storage. We report here the results of DFT calculations using VASP® package for clusters CanH2n with n = 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 20 to get the ground state geometries, energies, bond lengths, and desorption energies, after molecular dynamics optimization. The desorption energy vs. cluster size n curve showed that the desorption energy goes up sharply to ∼1.4 eV per H2 for n up to 4, followed by a broad maximum of ∼1.8 eV per H2 around n = 12–14, and then tapers off to a nearly constant value of 1.6 eV per H2 approximating bulk behavior, which compares favorably with previously reported results. Comparison of these results with those of MgnH2n shows that CanH2n has a lesser potential as a hydrogen storage medium.  相似文献   

17.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

18.
19.
In this paper, a performance analysis of a metal hydride based hydrogen storage container with embedded cooling tubes during absorption of hydrogen is presented. A 2-D mathematical model in cylindrical coordinates is developed using the commercial software COMSOL Multiphysics 4.2. Numerical results obtained are found in good agreement with experimental data available in the literature. Different container geometries, depending upon the number and arrangement of cooling tubes inside the hydride bed, are considered to obtain an optimum geometry. For this optimum geometry, the effects of various operating parameters viz. supply pressure, cooling fluid temperature and overall heat transfer coefficient on the hydriding characteristics of MmNi4.6Al0.4 are presented. Industrial-scale hydrogen storage container with the capacity of about 150 kg of alloy mass is also modeled. In summary, this paper demonstrates the modeling and the selection of optimum geometry of a metal hydride based hydrogen storage container (MHHSC) based on minimum absorption time and easy manufacturing aspects.  相似文献   

20.
Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号