首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured MgH2-Ni/Nb2O5 nanocomposite was synthesized by high-energy mechanical alloying. The effect of MgH2 structure, i.e. crystallite size and lattice strain, and the presence of 0.5 mol% Ni and Nb2O5 on the hydrogen-desorption kinetics was investigated. It is shown that the dehydrogenation temperature of MgH2 decreases from 426 °C to 327 °C after 4 h mechanical alloying. Here, the average crystallite size and accumulated lattice strain are 20 nm and 0.9%, respectively. Further improvement in the hydrogen desorption is attained in the presence of Ni and Nb2O5, i.e. the dehydrogenation temperature of MgH2/Ni and MgH2/Nb2O5 is measured to be 230 °C and 220 °C, respectively. Meanwhile, the dehydrogenation starts at 200 °C in MgH2–Ni/Nb2O5 system, revealing synergetic effect of Ni and Nb2O5. The mechanism of the catalytic effect is presented.  相似文献   

2.
Recently, it was shown that hydrogen absorption–desorption kinetics in magnesium were improved by milling magnesium hydride (MgH2) with transition metal oxides. Herein, we investigate the role of the most effective of these oxides, Nb2O5 when added in larger volume fraction. The effect of Nb2O5 on magnesium crystalline structure, particle size and (ab)desorption properties has been characterised. Moreover, we report that pure MgH2 can also show fast hydrogen sorption kinetics after a long milling time. The effects of Nb2O5 on MgH2 sorption properties are rationalised in a new approach considering Nb2O5 as a dispersing agent, which helps reduce MgH2 particle size during milling.  相似文献   

3.
The catalytic effect of MoS2 and MoO2 on the hydrogen absorption/desorption kinetics of MgH2 has been investigated. It is shown that MoS2 has a superior catalytic effect over MoO2 on improving the hydrogen kinetic properties of MgH2. DTA results indicated that the desorption temperature decreased from 662.10 K of the pure MgH2 to 650.07 K of the MgH2 with MoO2 and 640.34 K of that with MoS2. Based on the Kissinger plot, the activation energy of the hydrogen desorption process is estimated to be 101.34 ± 4.32 kJ mol−1 of the MgH2 with MoO2 and 87.19 ± 4.48 kJ mol−1 of that with MoS2, indicating that the dehydriding process energy barrier of MgH2 can be reduced. The enhancement of the hydriding/dehydriding kinetics of MgH2 is attributed to the presence of MgS and Mo or MgO and Mo which catalyze the hydrogen absorption/desorption behavior of MgH2. The detailed comparisons between MoS2 and MoO2 suggest that S anion has superior properties than O anion on catalyzing the hydriding/dehydriding kinetics of MgH2.  相似文献   

4.
In this research, the effect of NbF5 as an additive on the hydrogen desorption kinetics of MgH2 was investigated and compared to TiH2, Mg2Ni and Nb2O5 catalysts. The kinetics measurements were done using a method in which the ratio of the equilibrium plateau pressure to the opposing pressure was the same for all the reactions. The data showed NbF5 to be vastly superior to the other catalysts for improving the desorption kinetics of MgH2. The rates of desorption were found to be in the order NbF5 ? Nb2O5 > Mg2Ni > TiH2 > Pure MgH2. Kinetic modeling measurements showed that chemical reaction at the phase boundary to be the likely process controlling the reaction rates. TPD analyses showed the mixture with NbF5 has the lowest desorption temperature although it was accompanied with some weight penalty.  相似文献   

5.
An MgH2 + 1 mol% Nb2O5 system was modified by heptane and acetone through a high-energy ball milling process, and their rehydrogenation performances were investigated. XRD results indicated that except MgH2 and Nb2O5 phases Mg and MgO phases existed after ball milling. The rehydrogenation results showed that after modification by heptane the capacity increased from 3.0 wt% and 4.2 wt% to 5.0 wt% and 5.5 wt% within 110 s at 523 K and 573 K, respectively. The hydriding rate increased from 0.08 wt%/s after 20 s to 0.22 wt%/s after 10 s at 523 K. However, after modification by acetone it only absorbed 1.8 wt% and 2.0 wt% of hydrogen even within 8000 s at 523 K and 573 K, respectively. Rietveld refinement results indicated that after modification by the heptane the content of MgO was reduced from 6.8 wt% to 4.2 wt%, while after the modification by the acetone the content of MgO was significantly increased from 6.8 wt% to 23.8 wt%. The difference in the rehydrogenation performance was believed to be attributed to the different contents of the MgO phase, which led to the difference in the contents of the MgH2 phase. It implied that the heptane acted as a solvent without oxygen element in it to prevent the MgH2 + Nb2O5 system from aggregation, crystallization and oxidation. It suggested heptane was suitable for the improvement of the rehydrogenation performance of MgH2 system.  相似文献   

6.
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4.  相似文献   

7.
In the present work, the hydrogen storage properties of MgH2-X wt.% FeCl3 (X = 5, 10, 15 and 20) are investigated experimentally. It is found that the MgH2 + 10 wt.% FeCl3 sample exhibits the best comprehensive hydrogen storage properties, in terms of the onset dehydrogenation temperature, the hydrogen amounts de/reabsorbed as well as the relative de/rehydrogenation rates. The onset dehydrogenation temperature of the 10 wt.% FeCl3-doped MgH2 sample is reduced by about 90 °C compared to the as-milled MgH2, and the sorption kinetics measurements indicate that the FeCl3-doped sample displays an average dehydrogenation rate 5–6 times faster than that of the undoped MgH2 sample. Higher levels of doping introduce negative effects, such as lower capacity and slower absorption/desorption rates compared to samples with lower FeCl3 doping levels. The apparent activation energy for hydrogen desorption is decreased from 166 kJ•mol−1 for as-milled MgH2 to 130 kJ•mol−1 by the addition of 10 wt.% FeCl3. It is believed that the improvement of the MgH2 sorption properties in the MgH2/FeCl3 composite is due to the catalytic effects of the in-situ generated Fe species and MgCl2 that are formed during the heating process.  相似文献   

8.
Recent works showed that the addition of LiBH4 significantly improves the sorption kinetics of MgH2, and LiH decomposed from LiBH4 was supposed to play the catalytic effect on MgH2. In order to clarify this mechanism, the effect of LiH on the hydriding/dehydriding kinetics and thermodynamics of MgH2 was systematically investigated. The hydrogenation kinetics of LiH-doped samples, as well as the morphology after several cycles, was similar to those of pure MgH2, which indicate that Li+ had no catalytic effect on the hydrogenation of Mg. Moreover, the addition of LiH strongly retarded the hydrogen desorption of MgH2 doped with/without Nb2O5, and resulted in higher starting temperature of desorption, larger activation energy and larger pressure hysteresis of PCI curves of MgH2. H2, HD and D2 were observed in the desorption products of MgH2-2LiD, which confirms that H–H exchange indeed occurs between MgH2 and LiH, hence deteriorate desorption kinetics/thermodynamics of MgH2. The results implied that the additives containing H could retard the hydrogen desorption of MgH2 by H–H exchange effect.  相似文献   

9.
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 °C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 °C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be ∼43 kJ mol−1 H2, 10 kJ mol−1 lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo.  相似文献   

10.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

11.
The effect of Ti0.4Cr0.15Mn0.15V0.3 (termed BCC due to the body centered cubic structure) alloy on the hydrogen storage properties of MgH2 was investigated. It was found that the hydrogenated BCC alloy showed superior catalysis properties compared to the quenched and ingot samples. As an example, the 1 h milled MgH2 + 20 wt.% hydrogenated BCC shows a peak temperature of dehydrogenation of about 294 °C. This is 16, 27 and 74 °C lower than those of MgH2 ball milled with quenched BCC, ingot BCC and an uncatalysed MgH2 sample, respectively. The hydrogenated BCC alloy is much easier to crush into small particles, and embed in MgH2 aggregates as revealed by X-ray diffraction and scanning electron microscope results. The BCC not only increases the hydrogen atomic diffusivity in the bulk Mg but also promotes the dissociation and recombination of hydrogen. The activation energy, Ea, for the dehydrogenation of the MgH2/hydrogenated BCC mixture was found to be 71.2 ± 5 kJ mol H2−1 using the Kissinger method. This represents a significant decrease compared to the pure MgH2 (179.7 ± 5 kJ mol H2−1), suggesting that the catalytic effect of the BCC alloy significantly decreases the activation energy of MgH2 for dehydrogenation by surface activation.  相似文献   

12.
Nanostructured MgH2/0.1TiH2 composite was synthesized directly from Mg and Ti metal by ball milling under an initial hydrogen pressure of 30 MPa. The synthesized composite shows interesting hydrogen storage properties. The desorption temperature is more than 100 °C lower compared to commercial MgH2 from TG-DSC measurements. After desorption, the composite sample absorbs hydrogen at 100 °C to a capacity of 4 mass% in 4 h and may even absorb hydrogen at 40 °C. The improved properties are due to the catalyst and nanostructure introduced during high pressure ball milling. From the PCI results at 269, 280, 289 and 301 °C, the enthalpy change and entropy change during the desorption can be determined according to the van’t Hoff equation. The values for the MgH2/0.1TiH2 nano-composite system are 77.4 kJ mol−1 H2 and 137.5 J K−1 mol−1 H2, respectively. These values are in agreement with those obtained for a commercial MgH2 system measured under the same conditions. Nanostructure and catalyst may greatly improve the kinetics, but do not change the thermodynamics of the materials.  相似文献   

13.
The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary compound catalyst such as K2NiF6, the influence of KNbO3 on hydrogen storage properties of MgH2 has been investigated for the first time. The MgH2 - KNbO3 composite desorbed 3.9 wt% of hydrogen within 10 min, while MgH2 and MgH2-Nb₂O₅ composites desorbed 0.66 wt% and 3.2 wt% respectively under similar condition. For MgH2 with other Nb-contained catalysts such as Nb, NbO and Nb₂O3, the desorption rate was almost the same as the one registered for as-milled MgH2. The analysis of differential scanning calorimetry (DSC) showed that MgH2-KNbO3 composite started to release hydrogen at ∼335 °C which is 50 °C lower compared to as-milled MgH2 without any additives. The activation energy for the hydrogen desorption was estimated to be about 104 ± 6.8 kJ mol−1 for this material, while for the as-milled MgH2 was about 165 ± 2.0 kJ mol−1. It is believed that Nb-ternary oxide catalyst (KNbO3) showed a good catalytic effect and enhance the sorption kinetics of MgH2.  相似文献   

14.
15.
To improve the dehydrogenation/hydrogenation performance of magnesium hydride (MgH2), a nickel-vanadium bimetallic oxide (NiV2O6) was prepared by a simple hydrothermal method using ammonium metavanadate and nickel nitrate as raw materials. This oxide was used to improve the hydrogen storage performance of MgH2. NiV2O6 reacted with Mg to form Mg2Ni and V2O5; Mg2Ni and V2O5 played an important role in improving the hydrogen storage properties of MgH2. The NiV2O6-doped MgH2 had an excellent hydrogen absorption and desorption kinetics performance, and it could absorb 5.59 wt% of hydrogen within 50 min at 150 °C and release about 5.3 wt% of hydrogen within 12 min. The apparent activation energies for the dehydrogenation and hydrogenation of MgH2-NiV2O6 were 92.9 kJ mol?1 and 24.9 kJ mol?1, respectively. These were 21.7% and 66.3% lower than those of MgH2, respectively. The mechanism analysis demonstrated that the improved kinetic properties of MgH2 resulted from the heterogeneous catalysis of vanadium and nickel.  相似文献   

16.
In addition to lattice doping and carbon-coating, surface modification with other metal oxides can also improve the electrochemical performance of LiFePO4 powders. In this work, highly conductive vanadium oxide (V2O3) is in situ produced during the synthesis of carbon-coated LiFePO4 (LiFePO4/C) powders by a solid state reaction process and acts as a surface modifier. The structures and compositions of LiFePO4/C samples containing 0-10 mol% vanadium are analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Their electrochemical properties are also characterized with galvanostatic cell cycling and cyclic voltammetry. It is found that vanadium is present in the form of V2O3 that is incorporated in the carbon phase. The vanadium-modified LiFePO4/C samples show improved rate capability and low-temperature performance. Their apparent lithium diffusion coefficient is in the range of 10−12 to 10−10 cm2 s−1 depending on the vanadium content. Among the investigated samples, the one with 5 mol% vanadium exhibits the best electrochemical performance.  相似文献   

17.
The effect of mesoporous Co3O4, NiCo2O4 and NiO on the hydrogen sorption performance of MgH2 was investigated. These oxides were synthesized by multi-step nanocasting and introduced during the high-energy ball milling of MgH2 powder to act as catalysts. Hydrogen desorption on the as-milled powders was assessed upon heating the samples from room temperature to 400 °C. In all cases, the onset temperature for desorption was lowered by taking advantage of the introduced additives. The NiO-doped sample displayed the best response, the desorption rate being 7 times faster than in pure MgH2. Complementary kinetic studies on this particular sample revealed that the sorption activation energies were much lower (50 kJ/mol for absorption and 335 kJ/mol for desorption) than the corresponding ones for undoped MgH2 (57 kJ/mol for absorption and 345 kJ/mol for desorption), thus proving the catalytic activity of the mesoporous NiO oxide. Significantly, the X-ray powder diffraction (XRPD) patterns taken on the NiO-doped sample after discharging/charging cycles revealed that Mg could fully hydrogenate at the end of the charging process, while Mg metal was still detected in the undoped (pure) sample. Favored conditions for dissociative chemisorption of hydrogen could be ascribed to the formation of metallic Ni arising from complete or partial reduction of NiO, as observed in the XRPD patterns.  相似文献   

18.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

19.
Reactive ball milling (RBM) technique was employed to synthesize ultrafine powders of MgH2, using high energy ball mill operated at room temperature under 50 bar of a hydrogen gas atmosphere. The MgH2 powders obtained after 200 h of continuous RBM time composed of β and γ phases. The powders possessed nanocrystalline characteristics with an average grain of about 10 nm in diameter. The time required for complete hydrogen absorption and desorption measured at 250 °C was 500 s and 2500 s, respectively. In order to improve the hydrogenation/dehydrogenation kinetics of as synthesized MgH2 powders, three different types of nanocatalysts (metallic Ni, Nb2O5 and (Ni)x/(Nb2O5)y) were utilized with different weight percentages and independently ball milled with the MgH2 powders for 50 h under 50 bar of a hydrogen gas atmosphere. The results showed that the prepared nanocomposite MgH2/5Ni/5Nb2O5 powders possessed superior hydrogenation/dehydrogenation characteristics, indexed by low values of activation energy for β-phase (68 kJ/mol) and γ-phase (74 kJ/mol). This nanocomposite system showed excellent hydrogenation/dehydrogenization behavior, indexed by the short time required to uptake (41 s) and release (121 s) of 5 wt% H2 at 250 °C. At this temperature the synthesized nanocomposite powders possessed excellent absorption/desorption cyclability of 180 complete cycles. No serious degradation on the hydrogen storage capacity could be detected and the system exhibited nearly constant absorption and desorption values of +5.46 and −5.46 wt% H2, respectively.  相似文献   

20.
We investigated the effects of NbF5 addition by ball milling on the hydrogen storage properties of LiAlH4. Pressure-composition-temperature (PCT) experiments showed that addition of 0.5 and 1 mol% NbF5 in LiAlH4 improves the onset desorption temperature and results in little decrease in hydrogen capacity, with approximately 7.0 wt% released by 188 °C. Isothermal dehydriding kinetics measurements indicated that the NbF5-doped sample shows an average dehydrogenation rate 5–6 times faster than that of the as-received LiAlH4 sample. In the x-ray diffraction results, there are distinct peaks of Al and LiH that appear after desorption. There is no peak of NbF5 before or after desorption. Desorption kinetics measurements indicated that the activation energy, EA, for LiAlH4 + 1 mol% NbF5 is about 67 kJ/mol for first reaction stage and about 77 kJ/mol for second reaction stage. The desorption process was further characterised by differential scanning calorimetry, and the possible mechanism of the effects of NbF5 addition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号