共查询到20条相似文献,搜索用时 31 毫秒
1.
David Wenger Wolfgang Polifke Eberhard Schmidt-Ihn Tarek Abdel-Baset Steffen Maus 《International Journal of Hydrogen Energy》2009
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials. 相似文献
2.
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles. 相似文献
3.
Fuel economy of hydrogen fuel cell vehicles 总被引:1,自引:0,他引:1
On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5–2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor–expander module) are critical. 相似文献
4.
《International Journal of Hydrogen Energy》2023,48(25):9401-9425
Transportation sector is the important sector and consumed the most fossil fuel in the world. Since COVID-19 started in 2019, this sector had become the world connector because every country relies on logistics. The transportation sector does not only deal with the human transportation but also relates to logistics. Research in every country has searched for alternative transportation to replace internal combustion engines using fossil fuel, one of the most prominent choices is fuel cells. Fuel cells can use hydrogen as fuel. Hydrogen can be fed to the fuel cells to provide electric power to drive vehicles, no greenhouse gas emission and no direct combustion required. The fuel cells have been developed widely as the 21st century energy-conservation devices for mobile, stationary, and especially vehicles. The fuel cell electric vehicles using hydrogen as fuel were also called hydrogen fuel cell vehicles or hydrogen electric vehicles. The fuel cells were misconceived by several people that they were batteries, but the fuel cells could provide electric power continuously if their fuel was provided continuously. The batteries could provide electric power as their only capacities, when all ions are released, no power could be provided. Because the fuel cell vehicles play important roles for our future transportation, the overall review for these vehicles is significantly interesting. This overall review can provide general and technical information, variety of readers; vehicle users, manufacturers, and scientists, can perceive and understand the fuel cell vehicles within this review. The readers can realize how important the fuel cell technologies are and support research around the world to drive the fuel cell vehicles to be the leading vehicles in our sustainable developing world. 相似文献
5.
Terry A. Johnson Michael P. Kanouff Daniel E. Dedrick Gregory H. Evans Scott W. Jorgensen 《International Journal of Hydrogen Energy》2012
Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. 相似文献
6.
José Miguel Pasini Claudio Corgnale Bart A. van Hassel Theodore Motyka Sudarshan Kumar Kevin L. Simmons 《International Journal of Hydrogen Energy》2013
The United States Department of Energy (DOE) has published a progression of technical targets to be satisfied by on-board rechargeable hydrogen storage systems in light-duty vehicles. By combining simplified storage system and vehicle models with interpolated data from metal hydride databases, we obtain material-level requirements for metal hydrides that can be assembled into systems that satisfy the DOE targets for 2017. We assume minimal balance-of-plant components for systems with and without a hydrogen combustion loop for supplemental heating. Tank weight and volume are driven by the stringent requirements for refueling time. The resulting requirements suggest that, at least for this specific application, no current on-board rechargeable metal hydride satisfies these requirements. 相似文献
7.
On-board hydrogen storage systems employing high-pressure metal hydrides promise advantages including high volumetric capacities and cold start capability. In this paper, we discuss the development of a system simulation model in Matlab/Simulink platform. Transient equations for mass balance and energy balance are presented. Appropriate kinetic expressions are used for the absorption/desorption reactions for the Ti1.1CrMn metal hydride. During refueling, the bed is cooled by passing a coolant through tubes embedded within the bed while during driving, the bed is heated by pumping the radiator fluid through same set of tubes. The feasibility of using a high-pressure metal hydride storage system for automotive applications is discussed. Drive cycle simulations for a fuel cell vehicle are performed and detailed results are presented. 相似文献
8.
Numerical simulation of heat and mass transfer in metal hydride hydrogen storage tanks for fuel cell vehicles 总被引:1,自引:0,他引:1
S. Mellouli F. AskriH. Dhaou A. JemniS. Ben Nasrallah 《International Journal of Hydrogen Energy》2010
This paper presents a two-dimensional mathematical model to optimized heat and mass transfer in metal hydride storage tanks (hereinafter MHSTs) for fuel cell vehicles, equipped with finned spiral tube heat exchangers. This model which considers complex heat and mass transfer was numerically solved and validated by comparison with experimental data and a good agreement is obtained. 相似文献
9.
José Miguel Pasini Bart A. van Hassel Daniel A. Mosher Michael J. Veenstra 《International Journal of Hydrogen Energy》2012
In the global efforts to develop advanced materials-based hydrogen storage, the various on-board reversible hydrides, adsorbents and chemical storage candidate materials and systems each have their individual strengths and weaknesses. An overarching challenge in associated research and development is to devise material/system architectures which satisfy all requirements for viability in a particular application area, such as light-duty vehicular transportation. System modeling at the level which encompasses not only the storage material and vessel/reactor, but also integration with a fuel cell and balance-of-plant components, provides a more complete assessment of viability and guides options for improvement. The current work covers the methodology developed for conducting such system modeling consistently across multiple organizations and will present performance results from studies focused on reversible hydride systems. Connecting this high level modeling to more detailed finite element design simulations will be one aspect of our framework approach. The complex hydride NaAlH4 is representative of novel materials under development and will be used as the basis for properties, such as temperature dependent kinetics, which influence the integrated system configurations and component sizing. While system charging is included through the sizing of certain components, emphasis is placed on hydrogen discharge by the storage system, interrogated through drive cycle transients. Comparisons of performance relative to requirements, including effective gravimetric capacity, effective volumetric density and energy utilization, are given for the baseline material and for a sensitivity study on material density. 相似文献
10.
Leading physical and materials-based hydrogen storage options are evaluated for their potential to meet the vehicular targets for gravimetric and volumetric capacity, cost, efficiency, durability and operability, fuel purity, and environmental health and safety. Our analyses show that hydrogen stored as a compressed gas at 350–700 bar in Type III or Type IV tanks cannot meet the near-term volumetric target of 28 g/L. The problems of dormancy and hydrogen loss with conventional liquid H2 storage can be mitigated by deploying pressure-bearing insulated tanks. Alane (AlH3) is an attractive hydrogen carrier if it can be prepared and used as a slurry with >50% solids loading and an appropriate volume-exchange tank is developed. Regenerating AlH3 is a major problem, however, since it is metastable and it cannot be directly formed by reacting the spent Al with H2. We have evaluated two sorption-based hydrogen storage systems, one using AX-21, a high surface-area superactivated carbon, and the other using MOF-177, a metal-organic framework material. Releasing hydrogen by hydrolysis of sodium borohydride presents difficult chemical, thermal and water management issues, and regenerating NaBH4 by converting B–O bonds is energy intensive. We have evaluated the option of using organic liquid carriers, such as n-ethylcarbazole, which can be dehydrogenated thermolytically on-board a vehicle and rehydrogenated efficiently in a central plant by established methods and processes. While ammonia borane has a high hydrogen content, a solvent that keeps it in a liquid state needs to be found, and developing an AB regeneration scheme that is practical, economical and efficient remains a major challenge. 相似文献
11.
12.
《International Journal of Hydrogen Energy》2023,48(18):6811-6823
Metal hydride (MH) storage is known as a safe storage method because it does not require complex processes like high pressure or very low temperature. However, it is necessary to use a heat exchanger due to the endothermic and exothermic reactions occurring during the charging and discharging processes of the MH tanks. The performance of the MH is adversely affected by the lack of a heat exchanger or a suitable temperature range and it causes non-stable hydrogen supply to the fuel cell systems. In this study, effect of the tank surface temperature on hydrogen flow and hydrogen consumption performance were investigated for the MH hydrogen storage system of a hydrogen Fuel Cell Electric Vehicle (FCEV). Different temperature values were arranged using an external heat circulator device and a heat exchanger inside the MH tank. The fuel cell (FC) was operated at three different power levels (200 W, 400 W, and 600 W) and its performance was determined depending on the temperature and discharge flow rate of the MH tank. When the heat exchanger temperature (HET) was set to 40 °C, the discharge performance of the MH tank increased compared to lower temperatures. For example, when the FC power was set to 200 W and the HET of the system was at 40 °C, 1600 L hydrogen was supplied to the FC and 2000 Wh electrical energy was obtained. The results show that the amount of hydrogen supplied from the MH tank decreases significantly by increasing the flow rate in the system and rapid temperature changes occur in the MH tank. 相似文献
13.
This paper describes the general architecture of a hybrid energy system, whose main components are a proton exchange membrane fuel cell, a battery pack and an ultracapacitor pack as power sources, and metal hydride canisters as energy storage devices, suitable for supplying power to small mobile non-automotive devices in a flexible and variable way. The first experimental results carried out on a system prototype are described, showing that the extra components, required in order to manage the hybrid system, do not remarkably affect the overall system efficiency, which is always higher than 36% in all the test configurations examined. In fact, the system allows the fuel cell to work most often at quasi-optimal conditions, near its maximum efficiency (i.e. at low/medium loads), because high external loads are met by the combined effort of the fuel cell and the ultracapacitors. For the same reason, the metal hydride storage system can be used also under highly dynamic operating conditions, notwithstanding its usually poor kinetic performance. 相似文献
14.
15.
Yakup Hames Kemal Kaya Ertugrul Baltacioglu Arzu Turksoy 《International Journal of Hydrogen Energy》2018,43(23):10810-10821
A hydrogen fuel cell vehicle requires fuel cells, batteries, supercapacitors, controllers and smart control units with their control strategies. The controller ensures that a control strategy predicated on the data taken from the traction motor and energy storage systems is created. The smart control unit compares the fuel cell nominal output power with the vehicle power demand, calculates the parameters and continually adjusts the variables. The control strategies that can be developed for these units will enable us to overcome the technological challenges for hydrogen fuel cell vehicles in the near future. This study presents the best hydrogen fuel cell vehicle configurations and control strategies for safe, low cost and high efficiency by comparing control strategies in the literature for fuel economy. 相似文献
16.
T. Førde J. Eriksen A.G. Pettersen P.J.S. Vie Ø. Ulleberg 《International Journal of Hydrogen Energy》2009
A metal hydride (MH) storage unit and a polymer electrolyte membrane (PEM) fuel cell (FC) stack were thermally integrated through a common water circulation loop. The low temperature waste heat dissipated from the fuel cell stack was used to enhance and ensure the release of hydrogen from the storage unit. A water-heated MH-tank can be made more compact than an air-heated MH-tank with external heating fins, due to more direct heat transfer between MH-alloy and heating/cooling media. A water-heated MH-tank will therefore have the potential for better kinetics for absorption and desorption of hydrogen. 相似文献
17.
The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen FCVs in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen FCVs market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced. 相似文献
18.
Kriston P. Brooks Samuel J. Sprik David A. Tamburello Matthew J. Thornton 《International Journal of Hydrogen Energy》2018,43(18):8846-8858
The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3). 相似文献
19.
《International Journal of Hydrogen Energy》2005,30(11):1159-1179
Hydrogen from decentralized water electrolysis is one of the main fuelling options considered for future fuel cell vehicles. In this study, a model is developed to determine the key technical and economic parameters influencing the competitive position of decentralized electrolytic hydrogen. This model incorporates the capital, maintenance and energy costs of water electrolysis, as well as a monetary valuation of the associated greenhouse gas (GHG) emissions. It is used to analyze the competitive position of electrolytic hydrogen in three specific locations with distinct electricity mix: Vancouver, Los Angeles and Paris. Using local electricity prices and fuel taxes, electrolytic hydrogen is found to be commercially viable in Vancouver and Paris. Hydrogen storage comes out as the most important technical issue. But more than any technical issue, electricity prices and fuel taxes emerge as the two dominant issues affecting the competitive position of electrolytic hydrogen. The monetary valuation of GHG emissions, based on a price of $20/ton of CO2, is found to be generally insufficient to tilt the balance in favor of electrolytic hydrogen. 相似文献
20.
Boris P. Tarasov Pavel V. Fursikov Alexey A. Volodin Mikhail S. Bocharnikov Yustinas Ya Shimkus Aleksey M. Kashin Volodymyr A. Yartys Stanford Chidziva Sivakumar Pasupathi Mykhaylo V. Lototskyy 《International Journal of Hydrogen Energy》2021,46(25):13647-13657
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems. 相似文献