首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been recently found that the initial-energy effect, which is associated with the finite initial energy of carriers entering the multiplication region of an avalanche photodiode (APD), can be tailored to reduce the excess noise well beyond the previously known limits for thin APDs. However, the control of the initial energy of injected carriers can be difficult in practice for an APD with a single multiplication layer. In this paper, the dead-space multiplication recurrence theory is used to show that the low noise characteristics associated with the initial-energy effect can be achieved by utilizing a two-layer multiplication region. As an example, a high bandgap Al/sub 0.6/Ga/sub 0.4/As material, termed the energy-buildup layer, is used to elevate the energy of injected carriers without incurring significant multiplication events, while a second GaAs layer with a lower bandgap energy is used as the primary carrier multiplication layer. Computations show that devices can be optimally designed through judicious choice of the charge-layer width to produce excess noise factor levels that are comparable to those corresponding to homojunction APDs benefiting from a maximal initial-energy effect. A structure is presented to achieve precisely that.  相似文献   

2.
Avalanche multiplication and excess noise have been measured on a series of Al/sub x/Ga/sub 1-x/As-GaAs and GaAs-Al/sub x/Ga/sub 1-x/As (x=0.3,0.45, and 0.6) single heterojunction p/sup +/-i-n/sup +/ diodes. In some devices excess noise is lower than in equivalent homojunction devices with avalanche regions composed of either of the constituent materials, the heterojunction with x=0.3 showing the greatest improvement. Excess noise deteriorates with higher values of x because of the associated increase in hole ionization in the Al/sub x/Ga/sub 1-x/As layer. It also depends critically upon the carrier injection conditions and Monte Carlo simulations show that this dependence results from the variation in the degree of noisy feedback processes on the position of the injected carriers.  相似文献   

3.
The recurrence theory for the breakdown probability in avalanche photodiodes (APDs) is generalized to heterostructure APDs that may have multiple multiplication layers. The generalization addresses layer-boundary effects such as the initial energy of injected carriers as well as the layer-dependent profile of the dead space in the multiplication region. Reducing the width of the multiplication layer serves to both downshift and sharpen the breakdown probability curve as a function of the applied reverse-bias voltage. In structures where the injected carriers have an initial energy that is comparable to the ionization threshold energy, the transition from linear mode to Geiger-mode is more abrupt than in structures in which such initial energy is negligible. The theory is applied to two recently fabricated Al/sub 0.6/Ga/sub 0.4/As-GaAs heterostructure APDs and to other homostructure thin GaAs APDs and the predictions of the breakdown-voltage thresholds are verified.  相似文献   

4.
A novel top-illuminated In/sub 0.53/Ga/sub 0.47/As p-i-n photodiodes (MM-PINPD) grown on GaAs substrate by using linearly graded metamorphic In/sub x/Ga/sub 1-x/P (x graded from 0.49 to 1) buffer layer is reported. The dark current, optical responsivities, noise equivalent power, and operational bandwidth of the MM-PINPD with aperture diameter of 60 /spl mu/m are 13 pA, 0.6 A/W, 3.4/spl times/10/sup -15/ W/Hz/sup 1/2/, and 7.5 GHz, respectively, at 1550 nm. The performances of the MM-PINPD on GaAs are demonstrated to be comparable to those of a similar device made on InGaAs-InP substrate.  相似文献   

5.
Double heterojunction bipolar transistors based on the Al/sub x/Ga/sub 1-x/As/GaAs/sub 1-y/Sb/sub y/ system are examined. The base layer consists of narrow band gap GaAs/sub 1-y/Sb/sub y/ and the emitter and collector consist of wider band gap Al/sub x/Ga/sub 1-x/As. Preliminary experimental results show that AlGaAs/GaAsSb/GaAs DHBTs exhibit a current gain of five and a maximum collector current density of 5*10/sup 4/ A/cm/sup 2/.<>  相似文献   

6.
Large-area (500-/spl mu/m diameter) mesa-structure In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiodes (APDs) are reported. The dark current density was /spl sim/2.5/spl times/10/sup -2/ nA//spl mu/m/sup 2/ at 90% of breakdown; low surface leakage current density (/spl sim/4.2 pA//spl mu/m) was achieved with wet chemical etching and SiO/sub 2/ passivation. An 18 /spl times/ 18 APD array with uniform distributions of breakdown voltage, dark current, and multiplication gain has also been demonstrated. The APDs in the array achieved 3-dB bandwidth of /spl sim/8 GHz at low gain and a gain-bandwidth product of /spl sim/120 GHz.  相似文献   

7.
GaAs-based transistors with the highest f/sub T/ and lowest noise figure reported to date are presented in this letter. A 50-nm T-gate In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As metamorphic high-electron mobility transistors (mHEMTs) on a GaAs substrate show f/sub T/ of 440 GHz, f/sub max/ of 400 GHz, a minimum noise figure of 0.7 dB and an associated gain of 13 dB at 26 GHz, the latter at a drain current of 185 mA/mm and g/sub m/ of 950 mS/mm. In addition, a noise figure of below 1.2 dB with 10.5 dB or higher associated gain at 26 GHz was demonstrated for drain currents in the range 40 to 470 mA/mm at a drain bias of 0.8 V. These devices are ideal for low noise and medium power applications at millimeter-wave frequencies.  相似文献   

8.
We report a 1 cm/spl times/1 cm array of 100 In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiodes (APD). The average breakdown voltage was 28.7 V with a standard deviation of less than 0.5 V. The distribution of breakdown voltage across the area followed a radial pattern consistent with a slight epitaxial growth nonuniformity. The mean dark current at a gain of 10, or 6.1 A/W, was 10.3 nA, and none of the 100 APDs had a dark current of more than 25 nA. The bandwidth at a gain of 10 was 6.2 GHz, and the maximum gain-bandwidth product was 140 GHz. This technology is ideally suited for next-generation three-dimensional imaging applications.  相似文献   

9.
A generalized history-dependent recurrence theory for the time-response analysis is derived for avalanche photodiodes with multilayer, heterojunction multiplication regions. The heterojunction multiplication region considered consists of two layers: a high-bandgap Al/sub 0.6/Ga/sub 0.4/As energy-buildup layer, which serves to heat up the primary electrons, and a GaAs layer, which serves as the primary avalanching layer. The model is used to optimize the gain-bandwidth product (GBP) by appropriate selection of the width of the energy-buildup layer for a given width of the avalanching layer. The enhanced GBP is a direct consequence of the heating of primary electrons in the energy-buildup layer, which results in a reduced first dead space for the carriers that are injected into the avalanche-active GaAs layer. This effect is akin to the initial-energy effect previously shown to enhance the excess-noise factor characteristics in thin avalanche photodiodes (APDs). Calculations show that the GBP optimization is insensitive to the operational gain and the optimized APD also minimizes the excess-noise factor.  相似文献   

10.
《Electronics letters》1993,29(2):169-170
MBE grown metamorphic In/sub 0.29/Al/sub 0.71/As/In/sub 0.3/Ga/sub 0.7/As/GaAs high electron mobility transistors (HEMTs) have been successfully fabricated. A 0.4 mu m triangular gate device showed transconductance as high as 700 mS/mm at a current density of 230 mA/mm. The measured f/sub T/ was 45 GHz and f/sub max/ was 115 GHz. These high values are, to the authors knowledge, the first reported for submicrometre metamorphic InAlAs/InGaAs/GaAs HEMTs with an indium content of 30%.<>  相似文献   

11.
Presents threshold voltage data for Al/sub 0.48/In/sub 0.52/As/Ga/sub 0.47/In/sub 0.53/As/InP heterostructure insulated gate FETs (HIGFETs) with gate lengths from 1.2 mu m to 0.4 mu m. The refractory-gate, self-aligned fabrication process was applied to MBE-grown structures with 300 AA Ga/sub 0.47/In/sub 0.53/As channels and semi-insulating superlattice buffers to achieve sharp pinchoff with excellent threshold uniformity. HIGFETs with L/sub g/=1.2 mu m showed a threshold voltage of -0.076+or-0.019 V, making them well-suited to application in direct-coupled FET logic (DCFL) circuits.<>  相似文献   

12.
The RF noise characteristics of lattice-matched and strained In/sub 0.52/Al/sub 0.48/As/In/sub x/Ga/sub 1-x/As HEMTs grown by MBE have been investigated. The indium composition of the In/sub x/Ga/sub 1-x/As channel was varied from x=0.53 to 0.80. While the gain and speed performance were significantly improved with the increase of indium composition as expected, the noise characteristics showed that the microwave noise increases with the increase of the indium composition.<>  相似文献   

13.
Variations of the low-frequency noise (LFN), power, and dc characteristics of a variety of SiN/sub x/ passivated AlGaN/GaN MODFETs with different values of Al mole-fraction, gate length, and gate drain spacing upon RF stress are investigated. It is experimentally evidenced that the variation of Al mole-fraction (x) of the barrier Al/sub x/Ga/sub 1-x/N layer from 0.2 to 0.4, has no considerable impact on the drain and gate low-frequency noise current characteristics. The most noticeable variation on the device characteristics upon long-term RF stressing has been on the pinch-off voltage. Although no material degradation by increasing the Al mole-fraction has been evidenced through the low-frequency noise data, it is observed that the variation of pinch-off voltage upon RF stressing becomes more important as the Al mole-fraction increases.  相似文献   

14.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

15.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

16.
The ten stacked self-assembled InAs/GaAs quantum dot infrared photodetectors (QDIP) with different Al/sub 0.3/Ga/sub 0.7/As barrier widths and growth temperatures were prepared. Asymmetric current-voltage (I-V) characteristics and 2/spl sim/7.5 /spl mu/m detection window were observed. Peak responsivity of 84 mA/W at -0.4 V and peak specific detectivity of 2.5/spl times/10/sup 9/ cm-Hz/sup 1/2//W at zero bias were observed at 50 K. The characteristics of polarization insensitivity over the incident light and the high background photocurrent suggest that the self-assembled QDIP can be operated at higher temperature (/spl sim/250 K) under normal incidence condition in contrast to quantum well infrared photodetector (QWIP).  相似文献   

17.
A study is presented of the photocurrent behaviour of p-i-n diodes having GaAs/Al/sub x/Ga/sub 1-x/As MQW absorption regions for varying incident power, incident wavelength and barrier height, given by the Al fraction x. Optimum results for applications in high power oscillators are expected to be obtained for 0.1>  相似文献   

18.
Measurements of ultra-low linewidth enhancement factor in ridge-waveguide tunnel injection In/sub 0.4/Ga/sub 0.6/As/GaAs self-assembled quantum dot lasers have been made and the results compared with similar quantum well lasers. Values of /spl alpha//spl sim/3.8 were measured in the quantum well lasers, and /spl alpha/ was /spl les/0.7 in the quantum dot lasers. The consequent suppression of filamentation in the quantum dot devices has also been observed.  相似文献   

19.
The uniformly doped and the /spl delta/-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.6/Ga/sub 0.4/As metamorphic high-electron mobility transistors (MHEMTs) were fabricated, and the dc characteristics and the third-order intercept point (IP3) of these devices were measured and compared. Due to more uniform electron distribution in the quantum-well region, the uniformly doped MHEMT exhibits a flatter transconductance (G/sub m/) versus drain-to-source current (I/sub DS/) curve and much better linearity with higher IP3 and higher IP3-to-P/sub dc/ ratio as compared to the /spl delta/-doped MHEMT, even though the /spl delta/-doped device exhibits higher peak transconductance. As a result, the uniformly doped MHEMT is more suitable for communication systems that require high linearity operation.  相似文献   

20.
The properties of doped-channel field-effect transistors (DCFET) have been thoroughly investigated on Al/sub x/Ga/sub 1-x/As/InGaAs (x= 0.3, 0.5, 0.7, 1) heterostructures with various Al mole fractions. In this study, we observed that by introducing a 200-/spl Aring/-thick Al/sub 0.5/Ga/sub 0.5/As (x=0.5) Schottky layer can enhance the device power performance, as compared with the conventional x=0.3 AlGaAs composition system. However, a degradation of the device power performance was observed for further increasing the Al mole fractions owing to their high sheet resistance and surface states. Therefore, Al/sub 0.5/Ga/sub 0.5/As Schottky layer design provides a good opportunity to develop a high power device for power amplifier applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号