首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Observations of the flow properties of fluidized solids through a horizontal open channel with a porous tile distributor are reported. The shear stress at the vertical wall of the experimental section was measured directly and that across the distributor estimated from the difference between the total stress represented by the pressure drop along the experimental section and the wall shear stress. Experiments were carried out with a bed of catalyst of mean diameter 77 μm and ash of wide size distribution with a mean diameter of 380 μm over a range of fluidizing conditions between 1.75 and 3 Umf. Earlier results with a 196 μm sand have been reinterpreted on the same basis. Comparison is also made with flow property measurements using a modified Stormer viscometer.The freely fluidized and flowing fluidized beds showed pseudoplastic flow characteristics. The flowing sand and ash beds also displayed dilatant characteristics at higher fluidizing velocities. The apparent viscosity reduced with initial increase in gas flow rate, passed through a minimum and then increased. However, the minimum was not reached over the range of test with either the flowing catalyst or ash bed experiments. Whereas the distributor shear stress was consistently lower than that at the wall in the catalyst experiments, it exceeded that at the wall in both the sand and ash experiments at low shear rates and its relative value then decreased to less than that at the wall as the shear rate increased. Bed depth was a significant factor and flow behaviour was influenced by the width of the experimental channel.While there is reasonable correspondence between variation in shear stress measurements made in the modified Stormer viscometer and directly at the channel wall, the viscometer reading is sensitive to the position of the rotor within the bed. This and the varying slip at the distributor in the flowing bed system precludes direct application of small scale test data in the design of open-channel flow systems.  相似文献   

2.
吴诚  高希  成有为  王丽军  李希 《化工学报》2013,64(3):858-866
在湍动流化床中,过渡段对于包括甲醇制烯烃在内的气固催化快反应有着重要的作用。采用PV6D反射型光纤探针对内径95 mm的湍动流化床内过渡段的固含率分布和脉动参数进行了测量,分别考察了表观气速和静床高的影响,并采用修正的基于颗粒动力学的三段曳力双流体模型进行模拟。实验表明,湍动流化床过渡段中固含率的轴向分布呈现S型和指数型两种类型,固含率轴向与径向分布都在过渡段内出现最大梯度,表明过渡段中固体浓度分布比稀相段和密相段更不均匀。表观气速和静床高的变化将导致S型和指数型分布的相互转变,并且对过渡段底部与壁面附近的固体高浓度区影响最为显著。局部固含率脉动概率密度分布表明,在静床高较小时,随着气速的增大,床层下部气含率最大值位置将从中心区移动至环隙区,呈现气含率的双峰型分布。本文提出的修正三段曳力模型考虑了颗粒团聚的影响,对过渡段中分布板影响区之外的固含率分布均能较好地模拟。  相似文献   

3.
在一套组合约束型提升管冷态实验装置上,通过实验研究了不同操作条件下提升管出口气固分布器的压降,并与常规气体分布器压降进行了对比。实验结果表明,在零床层及有床层的操作模式下,气固分布器压降均随提升管内表观气速和颗粒循环强度的增加而增大,在颗粒循环强度较低时,气固分布器压降曲线变化的斜率随着表观气速的增加而增大,在颗粒循环强度较高时,气固分布器压降曲线变化的斜率随着表观气速的增加而减小;随着开孔率及上部流化床层压降增加,气固分布器压降呈降低趋势,当流化床层压降达到一定程度后,分布器各孔方可实现有效布气,此后气固分布器压降趋于近似不变;在相同表观气速及开孔率下,气固分布器压降大于常规气体分布器压降。  相似文献   

4.
Design and operation of a circulating fluidized bed requires the knowledge of fluid mechanics. According to heat and mass transfer as well as chemical reactions, the effect of the set superficial gas velocity on the axial pressure profile is of particular interest. The axial pressure profile was measured for a variety of solids, as a function of the superficial gas velocity, in a cylindrical circulating fluidized bed with an inner diameter of 0.19 m and an overall height of 11.5 m. Depending on the solids content and superficial gas velocity, two or one sections can be observed in the plant where the pressure gradient is constant. A pressure profile with one pressure gradient exists only at high gas velocities, so long as the acceleration pressure drop immediately above the gas distributor is negligible. Comparison of measured pressure drops in circulating fluidized beds with those measured in vertical pneumatic conveying led to a state diagram for vertical gas-solid flows. The operation behaviour of different types of circulating fluidized bed plants can be explained with the aid of this diagram.  相似文献   

5.
华蕾娜  赵虎  李军  王军武  朱庆山 《化工学报》2016,67(8):3251-3258
采用双流体模型对设置竖直隔板的气固密相流化床中非球形颗粒的运动进行了模拟,颗粒形状的影响由相间曳力模型考虑,重点考察壁面处颗粒边界条件的影响。同时进行了实验室规模三维流化床的流化实验,以验证模型的有效性。通过压降轴向分布、颗粒浓度径向分布以及物料出口处颗粒质量流率功率谱估计等定量分析,结果表明:对不设置内构件的自由床,壁面反射系数对系统宏观流动特性影响较小,而对壁面处局部颗粒运动影响较大;对壁面面积大幅增加的内构件床,壁面反射系数可显著改变气体和颗粒的运动特征,取值需控制在适当范围内。  相似文献   

6.
王德武  卢春喜 《化工学报》2008,59(4):859-865
针对催化汽油辅助反应器改质降烯烃工艺,在一套提升管-流化床耦合反应器大型冷态实验装置上,系统研究了提升管出口段的颗粒流动特性,通过定义约束指数Ri(Ri为颗粒约束返混区实际截面平均固含率与理论截面平均固含率之比)定量反映提升管出口分布器及流化床层的约束作用。结果表明,与常规提升管相比,耦合反应器提升管出口存在一个颗粒约束返混区,其长度主要受表观气速、颗粒循环强度及上部流化床内颗粒静床高度影响;由于出口设置了倒锥形分布器,使得颗粒约束返混区靠近提升管出口区域在表观气速较低和颗粒循环强度较大时,局部固含率最大值出现在量纲 1半径Φ=0.7处;颗粒约束返混区的约束指数在靠近出口的过程中逐渐增大,气固流动受到分布器及上部流化床层的约束作用亦逐渐增强。  相似文献   

7.
引言提升管是非均匀结构显著的气固两相流动体系,其流动特性主要表现为轴向空隙率的S形分布、径向的"环-核"结构以及团聚物的生成和破碎等。近年来,有关数值计算方法的研究增多,其中双流体模型的应用最为广泛,颗粒动理学则是目前封闭控制方程的最合理有效的方法。  相似文献   

8.
引言提升管是非均匀结构显著的气固两相流动体系,其流动特性主要表现为轴向空隙率的"S"形分布、径向的"环-核"结构以及团聚物的生成和破碎等。近年来,国内外学者致力于数值计算方法的研究增多,其中双流体模型的应用最为广泛;颗  相似文献   

9.
The aim of this work is to provide more insight into the general modeling criteria for simulating pseudo-2D bubbling fluidized beds. For this purpose, two experimental-based problems are studied. First, a fluidized bed with a high-speed central jet problem is analyzed. A qualitative study of the first bubble indicates that the bubble shape prediction is highly sensitive to the frictional model adopted. The most accurate results in terms of bubble shape and detachment time are given by a frictional model that relates the strain-rate fluctuations with the granular temperature. Second, a uniformly fluidized bed problem in bubbling regime is considered. For this case, the drag models and boundary conditions for the particulate phase are investigated. Time-averaged solid phase velocity profiles are compared with the results of the literature where it is found that no-slip conditions (or partial slip with a high specularity coefficient) are more appropriate than slip conditions at the walls for these regimes. Regarding the drag force, although none of the models presented could match the experimental velocity predictions for low gas velocities at the lower region of the bed, the Di Felice model produces the most accurate results for the whole range of regimes considered.  相似文献   

10.
Non-uniform flow distribution usually exists in a vertical radial flow adsorber, which significantly decreases the utilization of adsorbents. We adopted numerical simulation methods based on the ANSYS Fluent 15.0 software to study the flow pattern in vertical radial flow adsorber, where programs of user-defined functions (UDF) were set up to interpret component equation, momentum equation and energy equation. To solve the problem of non-uniform air distribution, the relationship between the radial pressure drop across the bed and the ratio of cross-sectional area of the central pipe to that of the annular channel was studied, and optimization design of the distributor inserted in the central channel was given by parametric method at the same time. Through comparative analysis in the given experimental condition, the uniformity reached about 99.1% and the breakthrough time extended from 564 s to 1,175 s under the present optimized design method.  相似文献   

11.
The influence of distributor structure on solids distribution is studied in two riser circulating fluidized bed reactors with different distributor structures but similar diameters. Optic fibre probes were used for the measurement of local solids distribution. The axial and radial distribution of solids holdup in the riser with a multi‐tube distributor is more uniform than that with a multi‐orifice distributor. The radial profiles of particle velocity in the riser with the multi‐tube distributor are also more uniform than that with the multi‐orifice distributor. In the riser with the multi‐tube distributor, both gas and particles are distributed more uniformly across the section, so that the flow acceleration is much more uniform and faster. The flow development is much faster and the fully developed region is reached early for the riser with the multi‐tube distributor. The distributor design is an important factor for the design of circulating fluidized bed reactor.  相似文献   

12.
The effects of pressure and surfactants on the phase holdups and flow regime transition velocities of gas–liquid–solid fluidized beds were investigated. The effect of pressure on the bed phase holdups is significant and more pronounced at larger gas flow rates where pressure has a greater effect on the equilibrium bubble size. The addition of a surfactant leads to an increase in the gas holdup and a lowering of the solids and liquid holdups. The presence of a surfactant with a liquid flow results in shearing of the bubbles across the gas–liquid distributor, limiting the effect of pressure. Finally, for all conditions, gas holdups in the freeboard region were greater than in the bed.  相似文献   

13.
轴向流固定床内流场的数值模拟与实验验证   总被引:4,自引:1,他引:4       下载免费PDF全文
The computational fluid dynamics model with porosity and drag coefficient was used to describe fluid flow in an axial flow fixed bed according to the characteristics of fluid flow in the fixed-bed of the reactor. The commercial computational fluid dynamics (CFD) code CFX was used to simulate the flow field in the axial flow fixed bed. The simulation predictions are in good agreement with experimental results of a large cold model. The influence of gas distributor on the flow field in the axial flow fixed bed was studied. A suitable gas distributor was used to attain less than 0.06 kPa radial pressure difference and less than 5.2% radial velocity difference in fixed bed.  相似文献   

14.
The numerical simulations and experimental data of bed hydrodynamics in a conical fluidized bed unit are compared. Experimental studies have been carried out in a bed containing TiO2 particles belonging to A/C boundary of Geldart's classification with a wide particle‐size distribution. Thus, pressure measurements and an optical fiber technique allowed determining the effect of static bed height on the fluidization characteristics of micronic particles. Numerical simulations have then been performed to evaluate the sensitivity of gas‐solids drag models. The Eulerian multiphase model has been used with different drag models and three boundary conditions (BC) consisting of no‐slip, partial‐slip, and free‐slip. The numerical predictions using the Gidaspow drag model and partial‐slip BC agreed reasonably well with the experimental bed pressure drop measurements. The simulation results obtained for bed expansion ratio show that the Gidaspow model with the free‐slip BC best fit with the experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

15.
The hydrodynamic performance of micrometric TiO2 particles has been experimentally studied in a conical fluidized bed and the results compared with numerical simulations. Local solid velocities in the bed have been measured by means of an optical fiber technique under different operating conditions of particle loading and air velocity. The radial profiles of axial solid velocities have been simulated to assess the sensitivity of grid size, and different drag models, namely, those by Syamlal and O'Brien, Ahmadi and Ma, Arastoopour et al., and Gidaspow, for no‐slip, partial‐slip, and free‐slip boundary conditions (BCs). The different drag models record almost similar results, but those provided by the Gidaspow and Ahmadi–Ma models, together with free‐slip BCs, are in somewhat better agreement with the experimental data for conical fluidized beds with smooth walls. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4502–4518, 2013  相似文献   

16.
耦合反应器提升管段颗粒速度分布及约束特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王德武  张海光  卢春喜 《化工学报》2008,59(12):3042-3049
A large-scale cold model experimental setup of a riser-fluidized bed coupled reactor was established according to the olefin reduction technology with an auxiliary reactor for FCC naphtha upgrading.Distributions of particle velocity in the riser section were experimentally investigated in the setup.Furthermore,the restriction index of particle velocity was defined to quantitatively show the restriction effects of the riser outlet lotus-shaped distributor and the upper fluidized bed on the particle flow behavior in the riser.The experimental results showed that the riser could be divided into two regions in the longitudinal direction,i.e.,lower traditional transport region and upper restriction region.In the longitudinal direction,the averaged cross-sectional particle velocity in the traditional transport region increased firstly,and then tended to be smooth,while decreased in the restriction region.With the increase of static bed height in the upper fluidized bed,the local particle velocity decreased,and the tendency of change in the core region is more than that in the wall region.Restriction effects of the lotus-shaped distributor and the upper fluidized bed on particle flow behavior enhanced with the increases of superficial gas velocity,solids flux and static bed height in the upper fluidized bed.In the same cross-section,outlet restriction effects enhanced with the increase of the dimensionless radial position r/R,and would not change when r/R≥0.5.  相似文献   

17.
气固流化床中声发射和流动模式关系   总被引:7,自引:2,他引:5       下载免费PDF全文
颗粒在气固流化床壁面区域(或局部空间区域)碰撞产生的声波能量反映了颗粒的碰撞速度和频率(活跃程度),从中可以揭示流化床内颗粒的流动混合模式。通过在φ150mm流化床冷模装置中,对聚乙烯颗粒-空气体系进行流态化实验,运用声发射技术测得声能量沿气固流化床的轴向分布,继而获得了颗粒的流动模式,并发现其与颗粒粒径、表观气速和分布板形式密切相关。对于颗粒粒径为460 μm的聚乙烯颗粒,当表观气速在0.3~0.7 m·s-1内,其对应的流动模式为带有滞留区的双循环流动模式。如果气速增大到0.8 m·s-1以上时,流动模式将转化为无滞留区的单循环流动模式。而当颗粒平均粒径降为365μm,对应的双循环流动模式蜕化为单循环模式,壁面不存在滞留区。进一步发现,滞留区位置与静床高无关。研究同时发现,颗粒的流动模式和分布板形式密切相关,对于在多孔平板分布板下为单循环流动模式的小粒径颗粒,在锥帽式分布板下,则在稍高气速时表现为双循环流动模式。  相似文献   

18.
固定床反应器内气体预分布器研究   总被引:1,自引:0,他引:1  
研究了直径1 000 mm,高3 000 mm的固定床冷模装置中气体预分布器对反应器内气流分布的影响。结果表明:气体分布器可改变床层内气流流形并使径向气流的速度分布趋于均匀;随着表观气速的增加,反应器内气流的不均匀程度增加;分布器的环隙高度在一定的范围可使反应器内气流的不均匀程度相对较好。应用计算流体力学软件CFX对固定床反应器内的流场进行模拟计算,并与大型冷模试验测试结果进行比较,模型计算值和冷模试验测量值吻合较好。  相似文献   

19.
EMMS曳力模型及其颗粒团模型的构建和检验   总被引:2,自引:2,他引:0       下载免费PDF全文
陈程  祁海鹰 《化工学报》2014,65(6):2003-2012
准确描述颗粒团聚特性是发展完善基于多尺度最小能量原理(EMMS)的曳力模型的重要方向之一。提出描述颗粒团聚特性的数学模型,不仅符合物理判断,而且与实验结果吻合。采用颗粒团模型,改进EMMS曳力模型,与实验及直接数值模拟结果吻合较好。改进的曳力模型与欧拉-欧拉双流体方法耦合,实现了不同工况下A、B类颗粒流化床流动特性的数值模拟。成功预测了颗粒非均匀分布特性、局部滑移速度、局部非均匀度以及噎塞状态。  相似文献   

20.
B. Peng  J. Zhu 《Powder Technology》2011,212(1):89-102
The non-uniform radial solids distribution usually has a negative effect on the performance of the circulating fluidized bed (CFB) riser since it may greatly decrease the reactor efficiency and controllability. In order to improve the performance of industrial CFB risers, the numerical study of the effects of the gas distributor and solids distributor at the CFB riser inlet on the uniformity of the radial solids distribution was carried out in this study. Two potential approaches to improve the uniformity of radial solids concentration profile were proposed: (1) the use of the center-sparse side-dense air jets arrangement for the gas distributor and (2) the use of the side-covered arrangement for the solids distributor. The Eulerian-Eulerian computational fluid dynamics (CFD) model with kinetic theory of granular flow was adopted to simulate the gas-solids two-phase flow in a CFB riser with FCC particles. The numerical results show that the patterns of the inlet gas distributor and solids distributor have significant effect on the flow structure in both the entrance region and the fully-developed region in the riser. The gas distributor with center-sparse side-dense air jet arrangement improves the uniformity of the radial solids distribution, while the center-dense side-sparse air jet arrangement steepens the non-uniformity of the solids radial profile. The core-annulus structure can be greatly flattened by applying a side-covered solids distributor, while it can be heavily steepened by employing the center-covered solids distributor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号