首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The understanding of the impact of environmental influence factors on propagation and damping of Lamb waves in composite materials is a topic of great interest for both design and utilization of structural health monitoring (SHM) systems. In this work, the influence of humidity absorption on the dispersive behavior of Lamb waves propagating in viscoelastic composite materials is investigated. Using a transversely isotropic material model and DMA measurements, the changes in the viscoelastic material properties due to water absorption are characterized. By means of a higher order plate theory and those mechanical properties, the dispersion curves for unconditioned and hot/wet-conditioned UD reinforced CFRP plates are then predicted. Both the changes in Lamb wave velocity and Lamb wave damping are investigated and compared with experimental values. Additionally, the changes of the sensor response, which are related to both the changes of the material properties and that of the adhesive layer, are investigated. The large impact of moisture absorption on Lamb wave excitation and propagation and its relevance for structural health monitoring (SHM) applications is shown and discussed.  相似文献   

2.
Piezo-ceramic transducers of the surface mounted type are commonly used for structural health monitoring (SHM) techniques. But, there is a disadvantage to use piezo-ceramic transducers of the surface mounted type in Lamb wave application. Due to the symmetric and antisymmetric Lamb wave modes generated by the surface mounted piezo-ceramic transducers simultaneously, the received signals are very complex and it is difficult to extract damage information from the signals.

In this paper, the practical method for SHM was proposed using piezo-ceramic transducers of the surface mounted type and Lamb wave. In order to overcome the difficulties in the signal processing of the simultaneous modes, the symmetric and antisymmetric modes were separated by using the two sensors bonded on the opposite surfaces at the same point. Also, spectral analyses of the separated symmetric and antisymmetric Lamb waves showed that each mode propagated with different frequency characteristics in the exciting frequency range.

By making use of these findings, the changes of power spectrum density in characteristic frequency band of symmetric and antisymmetric modes are proportional to the delamination size in quasi-isotropic Gr/Ep laminates. Therefore, this paper presents the damage assessment technique to extract damage information from the complicated PZT signals that could not be interpreted in time domain.  相似文献   


3.
Lamb波在结构健康监测中受到广泛关注,但其在传播过程中存在着多模和频散特性,不利于损伤定位和高分辨率成像。弯折频率变换(Warped Frequency Transform, WFT)通过构建合理的弯折映射可实现对频率轴的弯折。基于Lamb波群速度频散曲线设计弯折频率变换,则可用于Lamb波信号的处理。本文从直接补偿角度出发,利用WFT对传感信号进行频散抑制。提出了基于WFT的高分辨率损伤成像方法,利用有限元软件ABAQUS进行了带损伤铝板中Lamb波传播的仿真。仿真结果表明WFT能有效压缩频散的波包,通过本文所提成像方法可实现高分辨率损伤成像。  相似文献   

4.
We present an ultrasonic-based Lamb wave propagation method for identifying and measuring the damage location in a material as a basis for structural health monitoring (SHM). Lamb waves can propagate in a structure via mode conversion and reflection from the surfaces of the structure, and can lead to interference patterns as a resulting wave vector propagates along the structure. We determined the experimental and analytical effects of various parameters on the sensitivity of damage detection. A methodology is proposed for estimating and measuring the location of damage in test specimens. An experimental setup is used for generating Ao? Lamb waves by calibrating ultrasonic pulse generation for optimal values of parameters. Materials with different damage levels are tested in their undamaged and damaged conditions, and the effects of the parameters on the generated waves in test specimens are observed experimentally.  相似文献   

5.
The effectiveness of the Lamb waves Acoustic-Ultrasound Structural Health Monitoring (SHM) technique for the determination of the adhesive joint failure was evaluated and compared to that of another SHM technique: Surface Mountable Crack Sensor (SMCS). A commercially available Acoustic-Ultrasound system was used. The SMCS consists of a “hot spot” monitoring system based on a three-layer electrically insulating and conductive paint. An electrical signal is used as a boolean operator for the characterization of the passage of damage through the sensor and the underlying material. The coupons consisted of carbon fiber substrates with boron patches bonded to them. The advantages and disadvantages of both techniques are discussed. It has been demonstrated that the Lamb waves Acoustic-Ultrasound technique possesses the capability to identify and quantify damage in a bonded repair. The SMCS proved to be a successful SHM technique for the monitoring of the formation of a disbond at the edges of the patch. All results were validated using the C-Scan ultrasound method.  相似文献   

6.
In this study Lamb waves propagating in a laminated composite plate with stepped thickness variance are characterized through experiments. Understanding the characteristics of Lamb waves is very important for developing a structural health monitoring system, as the number, size, and location of transducers should be determined at the structural design stage. Thin piezoelectric (PZT) transducers bonded to the surface were used for the generation and reception of Lamb waves. The influences of stepped thickness variance were investigated with measurement of group velocities and frequency analyses of the received signals. In addition, a mode analysis was conducted by a mutual transmitting–receiving method making use of the difference between the signals received from a pair of PZTs consisting of transmitter and receiver.  相似文献   

7.
Impedance spectroscopy and application of Lamb waves are attractive methods for permanent monitoring of integrity in Structural Health Monitoring (SHM). Investigations of CFRP structures (Carbon Fibre Reinforced Polymers) with embedded or attached piezoceramic elements are presented for both methods. Examples regard impact damage detection as well as estimation of influencing factors (e.g. degradation of contacts or piezoceramic) and important characteristics (e.g. generation, velocity and attenuation of Lamb waves).  相似文献   

8.
陆希  孟光  李富才 《振动与冲击》2012,31(12):63-67
研究复杂工程结构的结构健康监测技术具有现实意义。使用基于Lamb波的仿真和实验方法,对“U”形截面的铝合金构件中的损伤检测问题进行了研究。建立了构件的三维有限元模型并实现了Lamb波传播过程的动态仿真;实验中使用锆钛酸铅压电晶片(PZT wafer)来激发和接收在构件中传播的Lamb波。借助于连续小波变换(CWT)和希尔伯特变换(HT)等方法对仿真和实验中采集到的Lamb波信号进行处理,从中提取了与损伤有关的时域特征,建立了损伤位置和损伤反射波包飞行时间(ToF)之间的定量关系。  相似文献   

9.
Lamb wave time reversal method is a new and tempting baseline-free damage detection technique for structural health monitoring. With this method, certain types of damage can be detected without baseline data. However, the application of this method using piezoelectric wafer active sensors (PWAS) is complicated by the existence of at least two Lamb wave modes at any given frequency, and by the dispersion nature of the Lamb wave modes existing in thin-wall structures. The theory of PWAS-related Lamb wave time reversal has not yet been fully studied. This paper addresses this problem by developing a theoretical model for the analysis of PWAS-related Lamb wave time reversal based on the exact solutions of the Rayleigh-Lamb wave equation. The theoretical model is first used to predict the existence of single-mode Lamb waves. Then the time reversal behavior of single-mode and two-mode Lamb waves is studied numerically. The advantages of single-mode tuning in the application of time reversal damage detection are highlighted. The validity of the proposed theoretical model is verified through experimental studies. In addition, a similarity metric for judging time invariance of Lamb wave time reversal is presented. It is shown that, under certain condition, the use of PWAS-tuned single-mode Lamb waves can greatly improve the effectiveness of the time-reversal damage detection procedure.  相似文献   

10.
含金属芯压电纤维(Metal-core Piezoelectric Ceramic Fiber,MPF)是一种新型压电功能器件.介绍了MPF的结构及其对圆形压电片激励Lamb波的传感响应模型.利用Gabor小波变换计算损伤反射信号到达时间延迟的原理,把MPF传感单一模式Lamb波在一维结构中进行了损伤定位研究.研究结果表明:MPF可以进行Lamb波的单一模式传感,采用Gabor小波变换计算损伤反射信号到达时间延迟效果较好,损伤定位精度较高.  相似文献   

11.
Advances in computer hardware and sensor technologies have led to a surge in the use of data-driven modeling and machine learning for structural engineering applications, with Structural Health Monitoring (SHM) being one of them. Despite considerable interest, it remains a research topic due to the difficulty in accurately quantifying aleatoric and epistemic uncertainty in SHM systems. Sources of uncertainty are related to operational and environmental variability, as well as measurement noise and the model prediction error associated with the data used to train damage identification algorithms. In this work, the authors aim to explicitly quantify the statistical structure of model prediction error and assess its influence on the detection performance of strain-based SHM architectures under the existence of aleatoric variability. A structural beam, subjected to probabilistic static loading is used as the reference structure and strain measurements as the damage-sensitive features. Model prediction error is quantified explicitly using robust statistical tools through available laboratory observations and synthetic (Finite Element) data. Monte Carlo simulations enabled the forward propagation of uncertainty to the feature space to generate training data for three binary detectors (Likelihood Ratio Test, Quadratic Discriminant Analysis and Mahalanobis Distance), based on statistical pattern recognition. Detection performance was compared between the explicitly quantified prediction model error and the commonly assumed white Gaussian noise model, showcasing the influence of systematic error (bias) and correlation on the robustness of an SHM system using real-world data.  相似文献   

12.
The signals acquired by measurements of elastic wave propagation have been used for damage detection since the 1970s. The measurements have been carried out mostly by using piezoelectric transducers of various types. Many different sensor configurations and data processing have been proposed to detect and localise structural defects, both for real‐time and off‐line testing. Nevertheless, in the last decade, significant progress in the measurement techniques such as scanning laser Doppler vibrometry and shearographic interferometry has been made. These techniques enable measurement of a full wavefield of elastic waves. This opens up new possibilities and solutions for the problems of the damage detection in structures. Many researchers successfully applied this type of measurements for the damage detection and localisation in thin‐walled structures. Moreover, advanced signal processing techniques, such as wavenumber filtering, give the possibility of damage size estimation, by filling the gap between damage detection and damage prognosis. The aim of this paper is to give a comprehensive review of methods used for the full wavefield measurement. It also describes and compares selected signal processing algorithms developed for damage detection and visualisation based on these measuring techniques. Criticism aspects, as well as advantages of each algorithm, are denoted based on the authors' expertise in the field.  相似文献   

13.
基于主动Lamb波的结构健康监测是目前复合材料结构损伤监测技术研究的热点之一,了解Lamb波的传播特性对进行可靠的损伤监测非常重要.本文结合经典三维弹性理论与Lamb波的运动位移方程,对碳纤维复合材料板中传播的Lamb波传播特性进行了建模研究,在此基础上推导了碳纤维板的相速度频散曲线,并讨论了Lamb波传播方向与坐标轴之间的夹角及碳纤维铺层方向对频散曲线的影响,建模结果证明了这种建模方法的正确性.  相似文献   

14.
摘要:含金属芯压电纤维(Metal-core Piezoelectric Ceramic Fiber,MPF)是一种新型压电功能器件。介绍了MPF的结构及其对圆形压电片激励Lamb波的传感响应模型。利用Gabor小波变换计算损伤反射信号到达时间延迟的原理,把MPF传感单一模式Lamb波在一维结构中进行了损伤定位研究。研究结果表明:MPF可以进行Lamb波的单一模式传感,采用Gabor小波变换计算损伤反射信号到达时间延迟效果较好,损伤定位精度较高。  相似文献   

15.
One of the important factors in the structural health monitoring systems is the amount of data that need to be analysed in real time. This study investigated the use of artificially deteriorated signals of Lamb waves in training the novelty detection (ND) system for the early damage detection. In this system Auto-associative Neural Networks were trained using principal components calculated on the basis of experimentally measured signals. The specimens studied relate to two different materials commonly used in the aerospace industry, i.e. aluminium and glass fibre reinforced polymer. Lamb waves measured in these specimens are a good example that the ND algorithm works correctly in case of simple as well as complex signals. Furthermore, it was found that the designed ND system remained sensitive and robust even when it used raw signals with a relatively low sampling rate, on a fairly narrow time window and even noised signals.  相似文献   

16.
兰姆波探伤中一些问题的探讨   总被引:4,自引:0,他引:4  
对金属薄板兰姆波探伤中的一些问题进行了探讨,提出了能量沿板厚分布的计算公式。指出不能将质点位移振幅沿板厚的分布当作能量分布,不能将能量分布是否均匀作为选择最佳探伤参数的主要依据。还对薄板中兰姆波的产生、兰姆波与分层作用的机理及如何选择最佳探伤参数等问题提出了初步的看法。  相似文献   

17.
The interaction of Lamb waves with defects   总被引:15,自引:0,他引:15  
The interaction of individual Lamb waves with a variety of defects simulated by notches is investigated using finite-element analysis, and the results are checked experimentally. Excellent agreement is obtained. It is shown that a 2-D Fourier transform method may be used to quantify Lamb wave interactions with defects. The sensitivity of individual Lamb waves to particular notches is dependent on the frequency-thickness product, the mode type and order, and the geometry of the notch. The sensitivity of the Lamb modes a(1), alpha(0), and s(0) to simulated defects in different frequency-thickness regions is predicted as a function of the defect depth to plate thickness ratio and the results indicate that Lamb waves may be used to find notches when the wavelength to notch depth ratio is on the order of 40. Transmission ratios of Lamb waves across defects are highly frequency dependent.  相似文献   

18.
B. A. Butrym  M. H. Kim  D. Inman 《Strain》2012,48(3):190-197
Abstract: Recently, a number of different structural health monitoring (SHM) techniques have been developed for the online inspection of air, land and sea engineering structures. Various smart materials are employed for detecting eminent damage in situ. Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. Fatigue design of structural components is typically accomplished either using a set of stress cycle (S‐N) data obtained from prior fatigue tests or using the fracture mechanics approach. The fracture mechanics approach considers the fatigue life of structures as a summation of crack initiation life and crack propagation life. The stress intensity factor (SIF) is required for the estimation of fatigue crack propagation life from the linear elastic fracture mechanics (LEFM) perspective. However, the accurate prediction of the SIF is difficult especially when the geometry or the boundary conditions of a structure becomes complex. In this study, a SHM application of macrofibre composite (MFC) sensors is presented. A set of MFC sensors is used for the real‐time measurement of the SIF. The measured values of the SIF are later used for the prediction of the crack propagation life. The impedance‐based SHM technique using the same set of MFC sensors is employed for the detection of crack initiation life.  相似文献   

19.
This paper presents a novel time-frequency procedure based on the warped frequency transform (WFT) to process multi-mode and dispersive Lamb waves for structural health monitoring (SHM) applications. The proposed signal processing technique is applied to time waveforms recorded at an array of scan points after waveguide excitation. The WFT is combined with a basis pursuit algorithm to extract the distance traveled by the ultrasonic waves even in the case of multi-modal dispersive propagation associated with broadband excitation of the waveguide. This is obtained through a decomposition of the acquired signals using dictionaries composed by optimized atomic functions which are designed to match the spectro-temporal structure of the various propagating modes. The warped basis pursuit (W-BP) analysis of several acquired waveforms results in distance signals that can be combined through classical beamforming techniques for acoustical source imaging purposes. A masking procedure is also proposed to suppress imaging noise. This approach is tested on experimental data obtained by broadband guided wave excitation in a 1-mm-thick aluminum plate with an artificially introduced through crack and tiny holes, followed by multiple waveguide displacement recording through a scanning laser Doppler vibrometer. Dispersion compensation, high-resolution source, and defect imaging are demonstrated even in domain regions that are not directly accessible for measurement.  相似文献   

20.
Abstract: In this study, Lamb wave propagation phenomena have been used to localise discontinuities in aluminium and composite panels. For that purpose, piezoelectric transducers have been used to excite and register Lamb waves in the panels. Excited waves that propagate and reflect from the panel edges and discontinuities were registered by piezoelectric sensors as voltage changes in time. Three different experiments have been conducted to investigate the wave propagation phenomena. In the first experiment, the attenuation and dispersion of Lamb waves in the aluminium panel has been studied. The second experiment has been oriented to localise an additional mass attached to the same panel. A dedicated signal‐processing algorithm has been developed to aid the localisation procedure that allowed to extract relevant features of the discontinuity. The algorithm has been tested on signals from the panel with and without the additional mass. The results obtained have been compared to find the position of the discontinuity. The third experiment concerned a more realistic damage scenario when piezoelectric transducers have been arranged as a clock‐like array to find a crack in a composite panel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号