首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The particle motion in a vibrated bed with an inner tube was simulated by the discrete element method (DEM). A height difference is observed in the vibrated particle bed between the interior and annulus of the inner tube. The bed height difference is strongly affected by the ratio of the cross section at the interior to that at the annulus of the inner tube. When the inner tube is immersed in the particle bed, the bed height difference causes the circulation of particles in the bed. The direction and velocity of particle circulation can be controlled by changing the inner tube diameter and the circulation velocity is also controlled with vibration conditions.  相似文献   

2.
A central draught tube in a Ruidised bed can be used to promote solids circulation and prevent the formation of stagnant regions. The dominant driving force for circulation is the difference in voidage between the draught tube and annulus, caused by supplying a larger superficial gas velocity to the base of the draught tube than to the base of the annulus. A theoretical model has been developed, taking into account the effects of shear stress, bubble growth in the draught tube, and the flow of solids from the annular downcomer to the central draught tube. Comparison with experimental work, the results of earlier workers, and unpublished work by British Gas, shows satisfactory agreement over a wide range of bed size with a variety of particles.  相似文献   

3.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   

4.
Gas fluidisation provides good mixing and contact of the gas and particle phases as well as good heat transfer. These attractive features are achieved by the high degree of bubble-induced particle circulation within the bed. Bubble and particle motion vary with bed materials and operating conditions, as investigated in the present study, by the use of the non-intrusive positron emission particle tracking (PEPT) technique. The selected materials were spherical polyethylene and glass particles.The data obtained by the PEPT technique are used to determine the particle velocities and circulation pattern. Bubble rise velocities and associated sizes can be inferred from the particle velocity data, since particles travel upwards mostly in the bubble wake. The results indicate that the flow structure and gas/solid motion within the fluidised beds were significantly different, even at the same value of the excess gas velocity, U-Umf. The solid circulation pattern within the beds differ: if for glass beads, a typical UCDW-pattern existed (upwards in the centre of the bed, downwards near the wall), the pattern in the polyethylene bed is more complex combining a small zone of UWDC movement near the distributor and a typical UCDW-pattern higher up the bed. Transformed data demonstrate that at the same value of excess gas velocity, U-Umf, the air bubbles in the polyethylene fluidised bed were smaller and rose more slowly than in the fluidised bed of glass beads, thus yielding a longer bubble residence time and improved gas/solid contact. For polyethylene beads, the size and rise velocity of air bubbles did not increase monotonically with vertical position in the bed as would be predicted by known empirical correlations, which however provide a fair fit for the glass beads data. Bubble sizes and solid circulation patterns are important parameters in the design of a fluidised bed reactor, and vary with the bed material used.  相似文献   

5.
Narrow size cuts of particles in the range 40–260 μm have been examined by X-rays when fluidised by air. No discontinuity in behaviour was observed with decreasing particle size. The bubbles behave the same in all materials except that their velocity increases with decreasing particle size. The visible bubble flow is generally less than the excess over minimum fluidisation flow. Almost all flow occurs interstitially near the bottom of the bed but the proportion decreases with height to approach Umf near the top of the bed. Appreciable changes in dense phase voidage occur with fine particles and this varies with bed height.  相似文献   

6.
The minimum fluidisation velocities of burned oil sand particles were investigated in a fluidised bed of I.D. 0.3 m and height 3 m based on de‐fluidisation method. The solid particles were four types of burned oil sand particles from different regions and depths and in different physical properties. A modified Noda equation [Noda et al., 46, 149–154 (1986)] was built to predict the minimum fluidisation velocities of the burned oil sand particles. The results showed that the burned oil sand particles had very wide size distribution and their fluidisation processes could be divided into fixed, partial fluidisation and full fluidisation stages, similar with binary‐particle fluidised beds. The calculated minimum fluidisation velocities were in good agreement with the experimental data. © 2011 Canadian Society for Chemical Engineering  相似文献   

7.
Bed collapsing experiments were carried out in a cold-air transparent column 192 mm in diameter and 2 m high. Typical Fluid Catalytic Cracking (FCC) catalyst with a mean particle size of 76 μm and a density of 1400 kg/m3 was used. Both single and double-drainage protocols were tested. The local pressure drop and bed surface collapse height were acquired throughout the bed settling.Typical results were found regarding dense phase voidage of a fluidised bed and the bed surface collapse velocity. In addition, bubble fraction was calculated based on the collapse curve.Experimental results showed that windbox effect is significantly reduced compared to previous works since the volume of air within the windbox was reduced. The comparison of single/double-drainage protocols revealed a new period in the defluidisation of Geldart-A particles concerning gas compressibility. Through the temporal analysis of local pressure drop, the progress of the solid sedimentation front from bottom to top was determined, analysed and modelled.  相似文献   

8.
针对开发适用于化学气相沉积反应动力学研究的微型流化床反应分析仪的应用需求,研究了外径为30 mm的内循环微型流化床中气固流动特性,具体考察了中心射流管伸入高度、内导流管直径和颗粒装载量对实现固体物料内循环的最小操作气速和导流管与环隙区间窜气的影响。结果表明,随着射流管伸入高度的增大,实现颗粒内循环流动的最小操作气速变大;存在最优的导流管直径(20 mm),使得实现颗粒环流的最小操作气速较小;增大颗粒装载量有利于降低颗粒内循环的最小操作气速。通过检测示踪气体在环隙区内的质谱信号,发现在所考察的参数范围内,反应器底部不存在导流管区向环隙区的窜气;在反应器上部,由于颗粒对气体的夹带,环隙区上部总能检测到示踪气体,且窜气特性随操作气速的增大而增强。研究结果可为设计适用于化学气相沉积反应的内循环微型流化床反应器提供参考。  相似文献   

9.
The behaviour of multi-orifice distributors in gas-solids fluidised beds has been studied with particular regard to the height of the entrance effect and the mechanics of gas-solids flow in the region immediately above the distributor plate. A model is proposed to predict the height of the entrance effect for a given distributor and gas-solids system at various fluidising flow-rates, and good agreement has been found with experiment. Experiments have been carried out with (a) a two-dimensional air-fluidised bed using three sizes of sand particles (dp: 137, 263, and 350 μm) and four distributors (orifice diameters: 0.001 m, 0.002 m; orifice spacings: 0.025 m, 0.05 m); and (b) a three-dimensional air-fluidised bed, 0.3 m square in cross-section, using 350 μm sand particles on a distributor with 0.003 m diameter orifices at a spacing of 0.04 m. The principal factors influencing the height of the entrance effect were found to be the incipient fluidising velocity, mean particle size, orifice spacing and gas flow-rate. The model has been used to estimate the minimum ratio of distributor pressure drop to bed pressure drop to bring about an even distribution of gas at the bottom of the bed.  相似文献   

10.
It has been demonstrated that the non-intrusive positron emission particle tracking (PEPT) could be a potential technique for observing bubble flow pattern, measuring bubble size and rise velocity in bubbling fluidised beds according to the solid motion in bubble and its wake. The results indicate that the behaviour of air bubbles varies greatly with the bed materials and superficial gas velocity. Three types of bubbling patterns (namely A, B and C) have been reported in this study, in which the pattern C is observed when the polyethylene fluidised bed is operated at the superficial gas velocity (U − Umf) of 0.25–0.5 m/s and the ratio of bed height to bed diameter is unity. After the comparison of the results measured by the PEPT technique with the values calculated by using a number of empirical correlations, two modified correlations are recommended to calculate the bubble size based on the PEPT data.  相似文献   

11.
The paper presents a 3-dimensional simulation of the effect of particle shape on char entrainment in a bubbling fluidised bed reactor. Three char particles of 350 μm side length but of different shapes (cube, sphere, and tetrahedron) are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions, reactor design and particle shape the char particles will either be entrained from the reactor or remain inside the bubbling bed. The sphericity of the particles is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. The simulation has been performed with a completely revised momentum transport model for bubble three-phase flow, taking into account the sphericity factors, and has been applied as an extension to the commercial finite volume code FLUENT 6.3.  相似文献   

12.
The experiments were carried on to study the minimum spout‐fluidised velocity in the spout‐fluidised bed. It was found that the minimum spout‐fluidised velocity increased with the rise of static bed height, spout nozzle diameter, particle density, particle diameter, fluidised gas velocity but decreased with the rise of carrier gas density. Based on the experiments, least square support vector machine (LS‐SVM) was established to predict the minimum spout‐fluidised velocity, and adaptive genetic algorithm and cross‐validation algorithm were used to determine the parameters in LS‐SVM. The prediction performance of LS‐SVM is better than that of the empirical correlations and neural network.  相似文献   

13.
This paper is the first of a series to study the influence of operating conditions on the kinetics of fluidised bed melt granulation. First, we identify the rate processes responsible for the net growth in granule size in a top-sprayed fluidised bed granulator and propose a sequence of events based on these rate processes. The overall kinetics during the process is identified to be a combination of particle aggregation, binder solidification and granule breakage. By conducting experiments in a small-scale modified commercial fluidised bed granulator, the influence of various operating conditions (binder spray rate, bed temperature, atomising pressure, fluidising air velocity) on the granule growth behaviour was examined. The results indicate the granule growth rate to be directly dependent on the relative amount of binder sprayed into the bed, which essentially determines the speed of the aggregation process. The overall granule growth rate is observed to increase relatively with increased bed temperature for a more viscous PEG4000, while a maximum growth is seen for a lower viscosity PEG1500. A larger droplet size was also seen to have increased the overall growth rate, even though a smaller droplet seems to be able to induce a faster initial growth. The results also reveal the increase in fluidising air velocity to reduce the overall granule growth rate. The final granule size distribution was also observed to become narrower with increased bed temperature and fluidising air velocity. These observations are effectively explained using the proposed sequence of rate events.  相似文献   

14.
A bench-scale fluidised bed (105 × 200 mm) was set-up for studying bed-to-gas and wall-to-bed heat transfer. Low temperature (17-200 °C) experiments were conducted at steady state avoiding excessive instrumentation and time. Compressed dry air at ambient temperature entered the bed through a distributor of a 200-mesh brass sieve and fluidised the single charge of alumina particles with a mean diameter of approximately 250 μm. The superficial gas velocity ranged from 0.085 to 0.412 m s− 1. A simple model was developed based on steady state energy balances, i.e. equating the electrical power input separately to the rate of heat transfer from the heater walls to the bed and from the bed to the gas. The bed-to-gas heat transfer coefficient was calculated from the model equations. Inserting this value into the relevant heat transfer equations then extracted the wall-to-bed and bed-to-gas heat transfer coefficients. The agreement between the experimental and predicted values of temperatures validated the model. The latter may be successfully used to design fluidised beds for e.g. drying or combustion.  相似文献   

15.
A new and comprehensive theory is developed to describe the division of gas between the bubble and interstitial phases of a fluidised bed, something not satisfactorily predicted by existing theories. It is based on the hydrodynamic models of Davidson, Harrison and Murray and distinguishes between bubbles with and without clouds. It makes no assumptions about the value to be attributed to the average dense phase porosity but requires an expression relating it to permeability. An example of application is given using data obtained from a bed of silicon carbide particles of mean diameter 262 μm fluidised by air. In this case, the dense phase porosity and the interstitial gas velocity decrease with height. Near the distributor a large proportion of the bubbles are small, slow moving and therefore without clouds but this proportion decreases sharply with increase in height.  相似文献   

16.
This study experimentally investigates the application of a solid–liquid micro-fluidised bed as a micro-mixing device. The experiments were performed in a borosilicate capillary tube with an internal diameter of 1.2 mm (i.e. near the upper-limit dimension of a micro-fluidic system) using borosilicate particles with a mean diameter of 98 μm. Refractive index matching technique using sodium iodide solution was employed to achieve a transparent fluidised bed. Mixing performance of the micro-fluidised bed in terms of mixing time was investigated using a dye dilution technique. Experiments were carried out in the creeping flow regime at Reynolds numbers ranging between 0.27 and 0.72. It was demonstrated that the micro-fluidised bed mixing time sharply decreases as the Reynolds number increases. That is because at relatively high Reynolds numbers, the particle oscillation is stronger creating larger disturbances in the flow. The energy dissipation rate in micro fluidised bed was estimated to be four orders of magnitude less than other passive micro mixers which operate in the turbulent regime. It was also demonstrated that the ratio of mixing time and the energy dissipation rate for fluidised bed micro-mixer was comparable to K-M, Tangential IMTEK, and interdigital micro-mixers. However, the fluidised bed micro-mixer was found to operate at much lower Reynolds numbers compared to other passive mixers, with a mixing time of the order of few seconds.  相似文献   

17.
环流反应器的研究绝大多数都局限于气液、气液固系统,涉及气固环流反应器的研究较为稀少,且大多针对气升式气固环流反应器和喷动床。本文研究了一种处理A类粒子的环隙气升式气固环流反应器,考察了操作条件和导流筒分布器位置对床层密度分布、环流速度和质量流率的影响。发现将分布器位置下移后可以有效地改善区域的流化质量、减小滑移区,床层密度沿径向的分布得到了明显改善,颗粒环流质量流率有了明显提高;进气位置以上r/R<0.367的床层得到了良好的流化,但是0.367相似文献   

18.
Predicting axial pressure profile of a CFB   总被引:1,自引:0,他引:1  
The numerical simulation of CFBs is an important tool in the prediction of its flow behavior. Predicting the axial pressure profile is one of the major difficulties in modeling a CFB. A model using a Particle Based Approach (PBA) is developed to accurately predict the axial pressure profile in CFBs. The simulation model accounts for the axial and radial distribution of voidage and velocity of the gas and solid phases, and for the solids volume fraction and particle size distribution of the solid phase. The model results are compared with and validated against atmospheric cold CFB experimental literature data. Ranges of experimental data used in comparisons are as follows: bed diameter from 0.05 to 0.305 m, bed height between 5 and 15.45 m, mean particle diameter from 76 to 812 μm, particle density from 189 to 2600 kg/m3, solid circulation fluxes from 10.03 to 489 kg/m2 s and gas superficial velocities from 2.71 to 10.68 m/s. The computational results agreed reasonably well with the experimental data. Moreover, both experimental data and model predictions show that the pressure drop profile is affected by the solid circulation flux and superficial velocity values in the riser. The pressure drop increases along the acceleration region as solid circulation flux increases and superficial velocity decreases.  相似文献   

19.
双喷嘴矩形喷动床流动性能实验研究   总被引:1,自引:0,他引:1  
张少峰  王淑华  赵剑波 《化学工程》2006,34(11):33-35,39
在120 mm×240 mm的双喷嘴矩形不锈钢床内,对新型双喷嘴矩形导流管喷动床的最小喷动速度和喷动高度进行了研究,考察了喷动气速、粒径、静床层高度、导流管直径、导流管安装位置对最小喷动速度和喷动高度的影响。结果表明:最小喷动速度随颗粒直径、导流管直径、导喷距的增大而增大,随静床层高度的增大而减小;喷动高度随喷动气速的增大而增大,随导流管直径的增大而减小,受静床层高度和导喷距的影响不大,并得出了最小喷动速度的关联式。  相似文献   

20.
Process operations often involve the physical interaction of a gas and a solid phase. Fluidised bed heat transfer can be characterised by limited space–time (τ) on the basis of particle volume in the bed. As aimed in this study, a thermal inefficiency model (TIM) was developed using a pseudo-steady-state heat balance, i.e., equating the electrical power input to the rate of heat transfers from the bed to the gas. A bench-scale fluidised bed (105 × 200 mm) was operated for obtaining the gas temperature profiles. Temperature data were used for extracting the bed-to-gas heat transfer coefficients (hBG) with effectiveness factors (η) from the TIM. Fluidised bed experiments at low temperature range (290–473 K) were conducted avoiding excessive instrumentation and time. Compressed dry air entered the bed through a distributor of a 200-mesh brass sieve and fluidised the single charge of alumina particles (1.3 kg) with a mean diameter approximately 250 μm. The superficial gas velocity was changed from 0.085 to 0.469 m s 1. The bed-to-gas heat transfer coefficients (hBG0×η0) at initial bed hight and thermal inefficiency constants (kI) were calculated from the intercept and slope of the linear form of the TIM, respectively. The agreement between the experimental and predicted values of gas temperatures confirmed by the TIM. The latter may be successfully used to design fluidised beds for, e.g., drying or combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号