首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the Internet continues to grow, the power consumption of telecommunication networks is rising at a considerable speed, which seriously increases the operational expenditure and greenhouse gas emission. Since optical Wavelength Division Multiplexing (WDM) networks are currently the most promising network infrastructures, power saving issue on these networks has received more attention in recent years. In traditional optical WDM networks, a large amount of power is drained by the redundant idle resources and reserved backup resources although these powered on resources do not carry traffic in most of the time. In order to reduce the network power consumption, turning off the corresponding network components or switching them to a low-power, standby state (or called sleep mode) is a promising greening approach. In this paper, we study the power-aware provisioning strategies and propose a sleep mode based Power-Aware Shared Path Protection (PASPP) heuristic algorithm to achieve the power efficiency of optical WDM networks. By jointly utilizing link-cost and fiber-cost in path routing, resource assignment, and resource release, PASPP makes working paths and backup paths converge on different fibers as much as possible, and switch idle and backup components to sleep mode to realize power saving. Simulation results show that our PASPP can obtain notable power saving and achieve satisfactory tradeoff between power efficiency and blocking probability with respect to Power-Unaware Shared Path Protection (PUSPP).  相似文献   

2.
The fiber‐wireless (FiWi) access network is a very promising solution for next‐generation access networks. Because of the different protocols between its subnets, it is hard to globally optimize the operation of FiWi networks. Network virtualization technology is applied to FiWi networks to realize the coexistence of heterogeneous networks and centralized control of network resource. The existing virtual resource management methods always be designed to optimize virtual network (VN) request acceptance rate and survivability, but seldom consider energy consumption and varied requirements of quality of service (QoS) satisfaction, which is a hot and important topic in the industrial field. Therefore, this paper focuses on the QoS‐aware cross‐domain collaborative energy saving mechanism for FiWi virtual networks. First, the virtual network embedding (VNE) model, energy consumption model, and VNE profit model of FiWi networks are established. Then, a QoS‐aware in‐region VN embedding mechanism is proposed to guarantee service quality of different services. After that, an underlying resource updating mechanism based on energy efficiency awareness is designed to realize low‐load ONU and wireless routers co‐sleep in FiWi networks. Finally, a QoS‐aware re‐embedding mechanism is presented to allocate proper resource to the VNs affected by the sleeping mechanism. Especially for video VNs, a re‐embedding scheme which adopts traffic splitting and multipath route is introduced to meet resource limitation and low latency. Simulation results show that the proposed mechanism can reduce FiWi network's energy consumption, improve VNE profit, and ensure high embedding accepting rate and strict delay demand of high‐priority VNs.  相似文献   

3.
The Ethernet passive optical network provides broadband Internet access but also consumes a lot of energy. Energy saving mechanisms using the dual-mode—Active and Sleep modes—design for optical network unit (ONU) in EPON still suffer unnecessary energy consumption, especially in asymmetric data flow such as video streaming downloading service. The Doze mode is particularly suitable for handling the asymmetric data flow since it allows the ONU’s transmitter to turn off while turning on its receiver to receive data from optical line termination (OLT). However, adding Doze mode into original dual-mode design incur a greater challenge for OLT to identify the current status of the ONU since the ONU cannot transmit any upstream message to OLT at either Doze or Sleep mode. In this paper, we propose a new QoS provisioning tri-mode energy saving scheme, by integrating the Doze mode into original dual-mode design, to allow the ONU to switch to one of the energy saving modes whenever no upstream traffic exists. A high-priority upstream packet, arriving at ONU of energy saving modes, is able to trigger the ONU back to Active mode for QoS provisioning purpose. Performance evaluation via simulation has demonstrated the effectiveness of such mechanism in various asymmetric data flow. Furthermore, we propose two additional enhanced approaches to increase the energy saving effects by deferring the triggering action of the high-priority upstream packet as well as coalescing new arrival packets during waiting time into the same scheduling cycle.  相似文献   

4.
Mobile Worldwide Interoperability for Microwave Access networks usually provide flexible sleep‐mode operations that allow mobile stations to conserve energy during sleep or active mode. For example, the IEEE 802.16e/m standard presents three power‐saving classes that can be associated with different types of network connections to decrease the power consumption of mobile stations. However, previous studies failed to fully use the sleep‐mode features to save energy of a mobile station while simultaneously maintaining unicast and multicast/broadcast connections. This study proposes an energy‐efficient packet scheduling algorithm for both multicast and broadcast services that does not violate the QoS requirements of real‐time connections. The proposed activity aggregation selection mechanism approach can minimize total power consumption of mobile stations in one cell and simultaneously satisfy the QoS of real‐time connections. This method improves energy efficiency for IEEE 802.16e/m and the activity aggregation selection mechanism approach can optimize sleeping mode features to save the energy of mobile stations with overlapping connection packets The simulations in this study verified the proposed approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Access and metro networks based on WDM technologies   总被引:3,自引:0,他引:3  
This paper describes the technical issues of access and metro networks based on wavelength division multiplexing (WDM) technologies, some solutions, and an experimental demonstration. A WDM star access network with colorless optical network units (ONUs) is proposed. For realizing the colorless ONU, two approaches are introduced; optical carrier supply and spectrum slicing. In addition, a WDM metro ring network with scalable optical add/drop multiplexers (OADMs), namely the tapped-type OADM, is proposed to effectively accommodate the large amount of traffic issued from access networks. Prototypes are constructed and used to verify the feasibility of the proposed WDM technologies.  相似文献   

6.
We demonstrate a linear bus wavelength‐reused gigabit wavelength‐division multiplexing passive optical network (WDM‐PON) with multiple optical add‐drop nodes. A commercially available reflective semiconductor optical amplifier‐based WDM‐PON has a sufficient power budget to provide multiple optical add/drop nodes in 16 WDM channels. Sixteen 1.25 Gb/s WDM channels are successfully transmitted over 20 km of single‐mode fiber with four optical add/drop multiplexers, even with 32 dB reflection and chromatic dispersion in the link.  相似文献   

7.
In our previous work, the limitation of standard type I and II power saving in IEEE 802.16e was discussed, and the idea of load‐based power saving (LBPS) was proposed for better power‐saving efficiency. LBPS measures traffic load and adaptively generates proper sleep schedule for the current load. Three LBPS schemes have been proposed for mobile subscriber station (MSS) power saving. In this paper, base station (BS) power saving is taken into consideration, and our previously proposed LBPS schemes, are extended and revised to integrate both BS and MSS in sleep scheduling. Two strategies of integrated power saving, MSS first and BS first, each with associated LBPS schemes are proposed in the paper. A three‐staged concept combining the proposed strategies is also presented to make the best of integrated power saving. A simulation study shows that the proposed schemes can effectively achieve high power‐saving efficiency for both BS and MSS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Hybrid WDM?CTDM PON (wavelength division multiplexing?Ctime division multiplexing passive optical network) that applies wavelength-independent or colorless ONU (optical network unit) technologies will further reduce implementation and maintenance expenses. The ??wavelength-reuse?? colorless ONU technology imposes a physical constraint in the hybrid WDM?CTDM PON that the same wavelength is used for both upstream and downstream traffic transmission of an ONU. This physical constraint brings a new challenge to developing traffic scheduling algorithms in the network, as upstream traffic scheduling is no longer independent of downstream traffic scheduling and the existing traffic scheduling algorithms that treated the upstream and downstream traffic independently cannot be applied in this case. We propose a new traffic scheduling algorithm that takes both directions?? traffic scheduling into account at the same time. A logical PON concept is defined, and wavelength resource sharing is performed based on reconfiguring logical PONs. Simulation study on this algorithm is conducted, and results show that it achieves efficient wavelength and bandwidth resource sharing in the network.  相似文献   

9.
绿色IP over WDM网络研究进展   总被引:2,自引:1,他引:2  
近年来光网络朝着高速率、大带宽的方向迅猛发展,设备数目快速增加导致网络能耗急剧增长。为了降低网络能耗,提高能量利用率,绿色IP over WDM网络的概念被提出,并成为光网络领域的最新研究热点之一。对现有光网络节能方法的研究状况进行综述,从网络设备入手,讨论业务负载和设备能耗的关系,建立了两种能耗模型。基于IP over WDM网络结构,利用数学表达式描述了网络能耗最小化问题。对当前网络级的节能方法进行分类,分析了其基本原理和节能效果,并选取代表性的节能方法进行比较,得出了现有方法存在的局限性和不足,对进一步的研究方向提出了建议。  相似文献   

10.
支持ONU模块独立不连续收发数据的节能方法   总被引:1,自引:0,他引:1  
为有效解决绿色无源光网络中的节能效果与时延性能的矛盾,提出一种支持ONU模块独立不连续收发数据的节能方法。通过光网络单元的模块化,各能耗模块独立地切换睡眠或唤醒模式,从而在规定时隙内实现不连续地收发数据;通过子周期划分,将实时业务集中到第一个子周期内收发,提升了网络的总体服务质量;提出完全独立的上下行带宽分配算法,使所提方法在流量上下行不对称的应用场景更具优势。仿真表明,所提方法在保证业务时延性能的前提下,网络的能耗得到进一步降低。  相似文献   

11.
The sleep mode has been introduced to improve the energy efficiency of passive optical networks (PONs) with interleaved polling with adaptive cycle time (IPACT) as a medium access control (MAC) scheme. For energy saving, the sleep mode of each optical network unit (ONU) is activated based on the packet queue length for upstream traffic. We model such a PON as an N-user M/G/1 queue with reservations and vacations. Based on the framework of M/G/1 queueing analysis with some modification made to incorporate the nature of IPACT as well as the sleep mode, we derive a closed form expression of the mean packet delay. A unique challenge in our analysis is that certain quantities such as the residual time of an on-going sleep period for the upstream channel must be considered from the network's viewpoint while the delay due to the sleep mode experienced by a packet must be considered from the ONU's viewpoint. Simulation experiments are conducted to validate the analytical results and to show that the results are relatively insensitive to packet arrival statistics for large sleep periods. Finally, we demonstrate how a sleep period can be chosen given the quality-of-service (QoS) requirement on the mean packet delay.  相似文献   

12.
薛琳  郭爱煌 《半导体光电》2012,33(5):722-727
针对IP over WDM网络,建立了整数线性规划(ILP)最小功耗模型,计算了满足峰值业务需要开启的设备数目;对于低峰业务提出休眠机制,分别利用最小光路数算法与最小跳数算法,在保证连接无阻塞的情况下找出空闲设备,对比峰值业务得到不同算法下的设备使用率,确定IP over WDM网络的节能潜力。结果表明,ILP优化模型的网络功耗最小,最小光路数算法次之;低峰业务下利用休眠机制可以关闭设备的比例占40%~60%;采用最小光路数算法的休眠机制节能效果较优。  相似文献   

13.
Following recent advances in the performance of ad hoc networks, the limited life of batteries in mobile devices poses a bottleneck in their development. Consequently, how to minimize power consumption in the Medium Access Control (MAC) layer of ad hoc networks is an essential issue. The power‐saving mode (PSM) of IEEE 802.11 involves the Timing Synchronization Function to reduce power consumption for single‐hop mobile ad hoc networks (MANETs). However, the IEEE 802.11 PSM is known to result in unnecessary energy consumption as well as the problems of overheating and back‐off time delay. Hence, this study presents an efficient power‐saving MAC protocol, called p‐MANET, based on a Multi‐hop Time Synchronization Protocol, which involves a hibernation mechanism, a beacon inhibition mechanism, and a low‐latency next‐hop selection mechanism for general‐purpose multi‐hop MANETs. The main purposes of the p‐MANET protocol are to reduce significantly the power consumption and the transmission latency. In the hibernation mechanism, each p‐MANET node needs only to wake up during one out of every N beacon interval, where N is the number of beacon intervals in a cycle. Thus, efficient power consumption is achieved. Furthermore, a beacon inhibition mechanism is proposed to prevent the beacon storm problem that is caused by synchronization and neighbor discovery messages. Finally, the low‐latency next‐hop selection mechanism is designed to yield low transmission latency. Each p‐MANET node is aware of the active beacon intervals of its neighbors by using a hash function, such that it can easily forward packets to a neighbor in active mode or with the least remaining time to wake up. As a consequence, upper‐layer routing protocols can cooperate with p‐MANET to select the next‐hop neighbor with the best forwarding delay. To verify the proposed design and demonstrate the favorable performance of the proposed p‐MANET, we present the theoretical analysis related to p‐MANET and also perform experimental simulations. The numerical results show that p‐MANET reduces power consumption and routing latency and performs well in extending lifetime with a small neighbor discovery time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
陈晓文 《激光技术》2014,38(1):124-127
为了减小时分复用无源光网络(TDM-PON)上行信号光波长的飘移,基于TDM-PON上行信号光功率均衡器架构,采用单模激光注入锁定光网络单元(ONU)法布里-珀罗(F-P)激光器(LD)方法,研究了F-P LD输出光波长的锁模特性,包括锁模的范围、驱动电流对锁模特性的影响、锁模前后温度变化引起F-P LD光波长变化情况等。结果表明,当驱动电流为9mA时,F-P LD可被锁模的波长范围为0.38nm,大于ONU上行光波长因环境温度变化5℃而产生的波长位移量0.25nm,F-P LD被锁模可使ONU上行信号的光波长相同且稳定,降低光功率均衡后的噪声。  相似文献   

15.
Reducing the power consumption of base stations in mobile networks is an important issue. We investigate the power saving evaluation in two-tier heterogeneous mobile networks which consist of femtocells overlaid by macrocells. In the heterogeneous mobile networks, base stations without traffic load are allowed to enter the sleep mode to save power. The power saving probability that a base station enters the sleep mode and the average total power consumption of this network are complex joint-effects of various factors. Successful modelling of these complex joint-effects is critical to mobile network operators when they pursue the design of green mobile networks. In this paper we propose an analytical framework to facilitate systematic analysis. Based on the proposed analytical framework, we investigate the power saving probabilities and the average total power consumption in terms of several parameters, including the new traffic arrival rate per user, the maximum transmission power of a femtocell, the number of femtocells within a macrocell, and the number of users in the network. Numerical results show that the proposed analytical framework provides a useful and efficient method to facilitate systematic analysis and design of green mobile networks. Simulation results validate the accuracy of the proposed analytical framework.  相似文献   

16.
With the exponential growth of Internet traffic, the energy consumption issue of core networks is increasingly becoming critical. Today's core networks are highly underutilized most of the time because of the over‐provisioning and redundancy dimensioning, which results in severe energy inefficiency. In previous work, many non‐deterministic polynomial‐time hard mathematics formulation models have been proposed to minimize the energy consumption of core networks. However, effective heuristics are needed to solve these models in medium/large‐size networks. This work studies the energy‐minimized routing and virtual topology design problem of the power‐hungry Internet protocol (IP) layer in core networks, aiming to achieve an energy‐proportional IP layer by exploiting the variation of traffic with hours to reconfigure virtual topology and reroute traffic. We formulate energy‐minimized routing and virtual topology design as an Integer linear programming problem and propose a LR algorithm, a heuristic based on the Lagrangian relaxation, to solve this problem in a polynomial‐time. The simulation results indicate that the LR algorithm outperforms the best previous algorithm and can achieve a near energy‐proportional IP layer with significant power saving. Furthermore, a detailed analysis of simulation results is conducted, which suggests a design principle of network equipment to facilitate the power saving. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an energy‐aware transmission mechanism that improves the throughput and reduces the energy consumption of mobile devices in wired‐cum‐wireless TCP networks. The proposed mechanism places an agent at the base station, which identifies the cause of packet losses in the underlying network. When the mobile device acts as a TCP source, it adjusts the size of the congestion window adaptively according to the cause of packet losses with the aids of the agent in order to improve the transmission performance. In addition, the proposed mechanism lets the communication device to stay in sleep mode after completing the transmission in order to reduce the energy consumption. As a result, the cooperation between the mobile device and the agent improves the transmission performance as well as the energy efficiency greatly. To evaluate the performance of the proposed mechanism, we analyzed the effect of TCP on the communication device for mobile devices and present a power model. With extensive simulations based on the power model, we demonstrate that the proposed mechanism significantly improves the transmission performance, and reduces the energy consumption over a wide range of both wired and wireless packet losses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In wavelength‐division multiplexing (WDM) optical networks, the bandwidth request of a traffic stream can be much lower than the capacity of a lightpath. Efficiently grooming low‐speed connections onto high‐capacity lightpaths will improve the network throughput and reduce the network cost. In this paper, we propose and evaluate a new concept of traffic aggregation in WDM mesh networks that aims to eliminate both the bandwidth under‐utilization and scalability concerns that are typical in all‐optical wavelength routed networks. This approach relies on the multipoint‐to‐point lightpath concept. In order to assess the efficiency of our proposal, all underlying network costs are compared. To achieve this aim, we devise a new provisioning algorithm to map the multipoint‐to‐point lightpaths in the network. Our results show that the proposed aggregation technique can significantly improve the network throughput while reducing its cost. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In wavelength division multiplexing (WDM) star networks, the construction of the transmission schedule is a key issue, which essentially affects the network performance. Up to now, classic scheduling techniques consider the nodes' requests in a sequential service order. However, these approaches are static and do not take into account the individual traffic pattern of each node. Owing to this major drawback, they suffer from low performance, especially when operating under asymmetric traffic. In this paper, a new class of scheduling algorithms for WDM star networks, which is based on the use of clustering techniques, is introduced. According to the proposed Clustering‐Based Scheduling Algorithm (CBSA), the network's nodes are organized into clusters, based on the number of their requests per channel. Then, their transmission priority is defined beginning from the nodes belonging to clusters with higher demands and ending to the nodes of clusters with fewer requests. The main objective of the proposed scheme is to minimize the length of the schedule by rearranging the nodes' service order. Furthermore, the proposed CBSA scheme adopts a prediction mechanism to minimize the computational complexity of the scheduling algorithm. Extensive simulation results are presented, which clearly indicate that the proposed approach leads to a significantly higher throughput‐delay performance when compared with conventional scheduling algorithms. We believe that the proposed clustering‐based approach can be the base of a new generation of high‐performance scheduling algorithms for WDM star networks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This study proposes an energy‐saving‐centric downlink scheduling scheme to support efficient power utilization and to satisfy the QoS requirements. The base station considers the queue lengths of mobile stations with real‐time and non‐real‐time connections and considers their QoS requirements to determine the sleeping parameters when the mobile stations issue sleep requests. The proposed scheme appropriately reschedules the sleep‐requesting mobile station to transmit its queued packets for optimal power‐saving efficiency. The QoS requirement is considered as the constraint during traffic rescheduling. The treatment of real‐time connections generally requires a trade‐off of the delay requirement and the longer sleep window, and the non‐real‐time connections must concern the packet drop and minimum data rates when performing the energy‐centric scheduling. Two rescheduling algorithms, that is, whole and partial reschedules, are proposed and analyzed in this paper. The whole‐reschedule scheme provides improved energy‐saving performance at the cost of tolerable longer delay and computing complexity when compared with the partial‐reschedule scheme. Our simulation results indicated that both schemes not only guarantee the desired QoS but also achieve superior energy‐saving efficiency to that of traditional scheduling. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号